1
|
Sun HD, Lin H, Jao MS, Wang KL, Liou WS,
Hung YC, Chiang YC, Lu CH, Lai HC and Yu MH: A long-term follow-up
study of 176 cases with adult-type ovarian granulosa cell tumors.
Gynecol Oncol. 124:244–249. 2012. View Article : Google Scholar
|
2
|
Lee YK, Park NH, Kim JW, Song YS, Kang SB
and Lee HP: Characteristics of recurrence in adult-type granulosa
cell tumor. Int J Gynecol Cancer. 18:642–647. 2008. View Article : Google Scholar
|
3
|
Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S,
Gani A and Ullah Khan S: The rise of 'big data' on cloud computing:
Review and open research issues. Inform Syst. 47:98–115. 2015.
View Article : Google Scholar
|
4
|
Gomes A, Reis-Silva M, Alarcão A, Couceiro
P, Sousa V and Carvalho L: Promoter hypermethylation of DNA repair
genes MLH1 and MSH2 in adenocarcinomas and squamous cell carcinomas
of the lung. Rev Port Pneumol. 20:20–30. 2014. View Article : Google Scholar
|
5
|
Amente S, Lania L and Majello B:
Epigenetic reprogramming of Myc target genes. Am J Cancer Res.
1:413–418. 2011.PubMed/NCBI
|
6
|
Nishida N, Kudo M, Nagasaka T, Ikai I and
Goel A: Characteristic patterns of altered DNA methylation predict
emergence of human hepatocellular carcinoma. Hepatology.
56:994–1003. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ling Q, Shi W, Huang C, Zheng J, Cheng Q,
Yu K, Chen S, Zhang H, Li N and Chen M: Epigenetic silencing of
dual oxidase 1 by promoter hypermethylation in human
hepato-cellular carcinoma. Am J Cancer Res. 4:508–517. 2014.
|
8
|
Sun D, Zhang Z, Van Do N, Huang G, Ernberg
I and Hu L: Aberrant methylation of CDH13 gene in nasopharyngeal
carcinoma could serve as a potential diagnostic biomarker. Oral
Oncol. 43:82–87. 2007. View Article : Google Scholar
|
9
|
Kim JS, Han J, Shim YM, Park J and Kim DH:
Aberrant methylation of H-cadherin (CDH13) promoter is associated
with tumor progression in primary nonsmall cell lung carcinoma.
Cancer. 104:1825–1833. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Putku M, Kals M, Inno R, Kasela S, Org E,
Kožich V, Milani L and Laan M: CDH13 promoter SNPs with pleiotropic
effect on cardiometabolic parameters represent methylation QTLs.
Hum Genet. 134:291–303. 2015. View Article : Google Scholar
|
11
|
Yoo KH and Hennighausen L: EZH2
methyltransferase and H3K27 methylation in breast cancer. Int J
Biol Sci. 8:59–65. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kontic M, Stojsic J, Jovanovic D,
Bunjevacki V, Ognjanovic S, Kuriger J, Puumala S and Nelson HH:
Aberrant promoter methylation of CDH13 and MGMT genes is associated
with clinicopathologic characteristics of primary non-small-cell
lung carcinoma. Clin Lung Cancer. 13:297–303. 2012. View Article : Google Scholar
|
13
|
Kloten V, Becker B, Winner K, Schrauder
MG, Fasching PA, Anzeneder T, Veeck J, Hartmann A, Knüchel R and
Dahl E: Promoter hypermethylation of the tumor-suppressor genes
ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast
cancer screening. Breast Cancer Res. 15:R42013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou XY, Sun JF, He YH, Zhang HY, Yu J,
Guo SC, Cai Y, Hu XC and Zhu JD: Correlation of the methylation
status of CpG islands in the promoter region of 10 genes with the
5-Fu chemosensitivity in 3 breast cancer cell lines. Zhonghua Zhong
Liu Za Zhi. 32:328–333. 2010.PubMed/NCBI
|
15
|
Friedrichs K, Gluba S, Eidtmann H and
Jonat W: Overexpression of p53 and prognosis in breast cancer.
Cancer. 72:3641–3647. 1993. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dhillon VS, Young AR, Husain SA and Aslam
M: Promoter hypermethylation of MGMT, CDH1, RAR-beta and SYK tumour
suppressor genes in granulosa cell tumours (GCTs) of ovarian
origin. Br J Cancer. 90:874–881. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen H, Zhang C, Sheng Y, Yao S, Liu Z,
Zhang C and Zhang T: Frequent SOCS3 and 3OST2 promoter methylation
and their epigenetic regulation in endometrial carcinoma. Am J
Cancer Res. 5:180–190. 2014. View Article : Google Scholar
|
18
|
Dhillon VS, Aslam M and Husain SA: The
contribution of genetic and epigenetic changes in granulosa cell
tumors of ovarian origin. Clin Cancer Res. 10:5537–5545. 2004.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Dhillon VS, Shahid M and Husain SA: CpG
methylation of the FHIT, FANCF, cyclin-D2, BRCA2 and RUNX3 genes in
Granulosa cell tumors (GCTs) of ovarian origin. Mol Cancer.
3:332004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Toyooka KO, Toyooka S, Virmani AK,
Sathyanarayana UG, Euhus DM, Gilcrease M, Minna JD and Gazdar AF:
Loss of expression and aberrant methylation of the CDH13
(H-cadherin) gene in breast and lung carcinomas. Cancer Res.
61:4556–4560. 2001.PubMed/NCBI
|
21
|
Toyooka S, Toyooka KO, Harada K, Miyajima
K, Makarla P, Sathyanarayana UG, Yin J, Sato F, Shivapurkar N,
Meltzer SJ and Gazdar AF: Aberrant methylation of the CDH13
(H-cadherin) promoter region in colorectal cancers and adenomas.
Cancer Res. 62:3382–3386. 2002.PubMed/NCBI
|
22
|
Xu J, Shetty PB, Feng W, Chenault C, Bast
RC Jr, Issa JP, Hilsenbeck SG and Yu Y: Methylation of HIN-1,
RASSF1A, RIL and CDH13 in breast cancer is associated with clinical
characteristics, but only RASSF1A methylation is associated with
outcome. BMC Cancer. 12:2432012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhai X and Li SJ: Methylation of RASSF1A
and CDH13 genes in individualized chemotherapy for patients with
non-small cell lung cancer. Asian Pac J Cancer Prev. 15:4925–4928.
2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhai X and Li SJ: Methylation of RASSF1A
and CDH13 genes in individualized chemotherapy for patients with
non-small cell lung cancer. Asian Pac J Cancer Prev. 15:4925–4928.
2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhong YH, Peng H, Cheng HZ and Wang P:
Quantitative assessment of the diagnostic role of CDH13 promoter
methylation in lung cancer. Asian Pac J Cancer Prev. 16:1139–1143.
2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xue R, Yang C, Zhao F and Li D: Prognostic
significance of CDH13 hypermethylation and mRNA in NSCLC. Onco
Targets Ther. 7:1987–1996. 2014.PubMed/NCBI
|
27
|
Hibi K, Kodera Y, Ito K, Akiyama S and
Nakao A: Aberrant methylation of HLTF, SOCS-1 and CDH13 genes is
shown in colorectal cancers without lymph node metastasis. Dis
Colon Rectum. 48:1282–1286. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Riou P, Saffroy R, Chenailler C, Franc B,
Gentile C, Rubinstein E, Resink T, Debuire B, Piatier-Tonneau D and
Lemoine A: Expression of T-cadherin in tumor cells influences
invasive potential of human hepatocellular carcinoma. FASEB J.
20:2291–2301. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lin YL, Xie PG and Ma JG: Aberrant
methylation of CDH13 is a potential biomarker for predicting the
recurrence and progression of non muscle invasive bladder cancer.
Med Sci Monit. 20:1572–1577. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Abudukadeer A, Bakry R, Goebel G,
Mutz-Dehbalaie I, Widschwendter A, Bonn GK and Fiegl H: Clinical
relevance of CDH1 and CDH13 DNA-methylation in serum of cervical
cancer patients. Int J Mol Sci. 13:8353–8363. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wu Q, Lothe RA, Ahlquist T, Silins I,
Tropé CG, Micci F, Nesland JM, Suo Z and Lind GE: DNA methylation
profiling of ovarian carcinomas and their in vitro models
identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets. Mol
Cancer. 6:452007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Makarla PB, Saboorian MH, Ashfaq R,
Toyooka KO, Toyooka S, Minna JD, Gazdar AF and Schorge JO: Promoter
hypermeth-ylation profile of ovarian epithelial neoplasms. Clin
Cancer Res. 11:5365–5369. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Rathi A, Virmani AK, Schorge JO, Elias KJ,
Maruyama R, Minna JD, Mok SC, Girard L, Fishman DA and Gazdar AF:
Methylation profiles of sporadic ovarian tumors and nonmalignant
ovaries from high-risk women. Clin Cancer Res. 8:3324–3331.
2002.PubMed/NCBI
|
34
|
Kawakami M, Staub J, Cliby W, Hartmann L,
Smith DI and Shridhar V: Involvement of H-cadherin (CDH13) on 16q
in the region of frequent deletion in ovarian cancer. Int J Oncol.
15:715–720. 1999.PubMed/NCBI
|
35
|
Yu J, Tao Q, Cheng YY, Lee KY, Ng SS,
Cheung KF, Tian L, Rha SY, Neumann U, Röcken C, et al: Promoter
methylation of the Wnt/beta-catenin signaling antagonist Dkk-3 is
associated with poor survival in gastric cancer. Cancer. 115:49–60.
2009. View Article : Google Scholar
|
36
|
Ying J, Li H, Yu J, Ng KM, Poon FF, Wong
SC, Chan AT, Sung JJ and Tao Q: WNT5A exhibits tumor-suppressive
activity through antagonizing the Wnt/beta-catenin signaling, and
is frequently methylated in colorectal cancer. Clin Cancer Res.
14:55–61. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hayashi T, Asano H, Toyooka S, Tsukuda K,
Soh J, Shien T, Taira N, Maki Y, Tanaka N, Doihara H, et al: DNA
methylation status of REIC/Dkk-3 gene in human malignancies. J
Cancer Res Clin Oncol. 138:799–809. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Voorham QJ, Janssen J, Tijssen M,
Snellenberg S, Mongera S, van Grieken NC, Grabsch H, Kliment M,
Rembacken BJ, Mulder CJ, et al: Promoter methylation of
Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas.
BMC Cancer. 13:6032013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yin DT, Wu W, Li M, Wang QE, Li H, Wang Y,
Tang Y and Xing M: DKK3 is a potential tumor suppressor gene in
papillary thyroid carcinoma. Endocr Relat Cancer. 20:507–514. 2013.
View Article : Google Scholar
|
40
|
Kang WS, Cho SB, Park JS, Lee MY, Myung
SC, Kim WY, Lee SH, Kim DH and Lee EJ: Clinico-epigenetic
combination including quantitative methylation value of DKK3
augments survival prediction of the patient with cervical cancer. J
Cancer Res Clin Oncol. 139:97–106. 2013. View Article : Google Scholar
|
41
|
Liang L, He H, Lv R, Zhang M, Huang H, An
Z and Li S: Preliminary mechanism on the methylation modification
of Dkk-1 and Dkk-3 in hepatocellular carcinoma. Tumour Biol.
36:1245–1250. 2015. View Article : Google Scholar
|
42
|
Tao L, Huang G, Chen Y and Chen L: DNA
methylation of DKK3 modulates docetaxel chemoresistance in human
nonsmall cell lung cancer cell. Cancer Biother Radiopharm.
30:100–106. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ottolenghi C, Omari S, Garcia-Ortiz JE,
Uda M, Crisponi L, Forabosco A, Pilia G and Schlessinger D: Foxl2
is required for commitment to ovary differentiation. Hum Mol Genet.
14:2053–2062. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Schmidt D, Ovitt CE, Anlag K, Fehsenfeld
S, Gredsted L, Treier AC and Treier M: The murine winged-helix
transcription factor Foxl2 is required for granulosa cell
differentiation and ovary maintenance. Development. 131:933–942.
2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Rosario R, Araki H, Print CG and Shelling
AN: The transcriptional targets of mutant FOXL2 in granulosa cell
tumours. PLoS One. 7:e462702012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shah SP, Köbel M, Senz J, Morin RD, Clarke
BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalloger SE, et al:
Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J
Med. 360:2719–2729. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jamieson S, Butzow R, Andersson N,
Alexiadis M, Unkila-Kallio L, Heikinheimo M, Fuller PJ and Anttonen
M: The FOXL2 C134W mutation is characteristic of adult granulosa
cell tumors of the ovary. Mod Pathol. 23:1477–1485. 2010.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Kim MS, Hur SY, Yoo NJ and Lee SH:
Mutational analysis of FOXL2 codon 134 in granulosa cell tumour of
ovary and other human cancers. J Pathol. 221:147–152. 2010.
View Article : Google Scholar : PubMed/NCBI
|
49
|
D'Angelo E, Mozos A, Nakayama D, Espinosa
I, Catasus L, Muñoz J and Prat J: Prognostic significance of FOXL2
mutation and mRNA expression in adult and juvenile granulosa cell
tumors of the ovary. Mod Pathol. 24:1360–1367. 2011. View Article : Google Scholar : PubMed/NCBI
|
50
|
Oseto K, Suzumori N, Nishikawa R,
Nishikawa H, Arakawa A, Ozaki Y, Asai H, Kawai M, Mizuno K,
Takahashi S, et al: Mutational analysis of FOXL2 p.C134W and
expression of bone morphogenetic protein 2 in Japanese patients
with granulosa cell tumor of ovary. J Obstet Gynaecol Res.
40:1197–1204. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Tran S, Wang Y, Lamba P, Zhou X, Boehm U
and Bernard DJ: The CpG island in the murine foxl2 proximal
promoter is differentially methylated in primary and immortalized
cells. PLoS One. 8:e766422013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhao Y, Zhou H, Ma K, Sun J, Feng X, Geng
J, Gu J, Wang W, Zhang H, He Y, et al: Abnormal methylation of
seven genes and their associations with clinical characteristics in
early stage non-small cell lung cancer. Oncol Lett. 5:1211–1218.
2013.PubMed/NCBI
|
53
|
Sharma S, Kelly TK and Jones PA:
Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010. View Article : Google Scholar :
|
54
|
Viré E, Brenner C, Deplus R, Blanchon L,
Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden
JM, et al: The Polycomb group protein EZH2 directly controls DNA
methylation. Nature. 439:871–874. 2006. View Article : Google Scholar
|
55
|
Cao R and Zhang Y: The functions of
E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr
Opin Genet Dev. 14:155–164. 2004. View Article : Google Scholar : PubMed/NCBI
|
56
|
Hoffmann MJ, Engers R, Florl AR, Otte AP,
Muller M and Schulz WA: Expression changes in EZH2, but not in
BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation
changes in prostate cancer. Cancer Biol Ther. 6:1403–1412. 2007.
View Article : Google Scholar
|
57
|
Bachmann IM, Halvorsen OJ, Collett K,
Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP and
Akslen LA: EZH2 expression is associated with high proliferation
rate and aggressive tumor subgroups in cutaneous melanoma and
cancers of the endometrium, prostate, and breast. J Clin Oncol.
24:268–273. 2006. View Article : Google Scholar
|
58
|
Wang J, Yu L, Cai J, Jia J, Gao Y, Liang M
and Wang Z: The role of EZH2 and DNA methylation in hMLH1 silencing
in epithelial ovarian cancer. Biochem Biophys Res Commun.
433:470–476. 2013. View Article : Google Scholar : PubMed/NCBI
|
59
|
Kodach LL, Jacobs RJ, Heijmans J, van
Noesel CJ, Langers AM, Verspaget HW, Hommes DW, Offerhaus GJ, van
den Brink GR and Hardwick JC: The role of EZH2 and DNA methylation
in the silencing of the tumour suppressor RUNX3 in colorectal
cancer. Carcinogenesis. 31:1567–1575. 2010. View Article : Google Scholar : PubMed/NCBI
|
60
|
Rush M, Appanah R, Lee S, Lam LL, Goyal P
and Lorincz MC: Targeting of EZH2 to a defined genomic site is
sufficient for recruitment of Dnmt3a but not de novo DNA
methylation. Epigenetics. 4:404–414. 2009. View Article : Google Scholar : PubMed/NCBI
|