1
|
Lawrence RC, Felson DT, Helmick CG, Arnold
LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG,
et al: Estimates of the prevalence of arthritis and other rheumatic
conditions in the United States. Part II. Arthritis Rheum.
58:26–35. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Felson DT, Chaisson CE, Hill CL, Totterman
SM, Gale ME, Skinner KM, Kazis L and Gale DR: The association of
bone marrow lesions with pain in knee osteoarthritis. Ann Intern
Med. 134:541–549. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
Goldring MB and Goldring SR:
Osteoarthritis. J Cell Physiol. 213:626–634. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen WP, Bao JP, Hu PF, Feng J and Wu LD:
Alleviation of osteoarthritis by Trichostatin A, a histone
deacetylase inhibitor, in experimental osteoarthritis. Mol Biol
Rep. 37:3967–3972. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Neogi T and Zhang Y: Osteoarthritis
prevention. Curr Opin Rheumatol. 23:185–191. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee R and Kean WF: Obesity and knee
osteoarthritis. Inflammopharmacology. 20:53–58. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Loeser RF: Aging and osteoarthritis. Curr
Opin Rheumatol. 23:492–496. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Aigner T and McKenna L: Molecular
pathology and pathobiology of osteoarthritic cartilage. Cell Mol
Life Sci. 59:5–18. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hu PF, Chen WP, Tang JL, Bao JP and Wu LD:
Protective effects of berberine in an experimental rat
osteoarthritis model. Phytother Res. 25:878–885. 2011. View Article : Google Scholar
|
10
|
Loeuille D, Chary-Valckenaere I,
Champigneulle J, Rat AC, Toussaint F, Pinzano-Watrin A, Goebel JC,
Mainard D, Blum A, Pourel J, et al: Macroscopic and microscopic
features of synovial membrane inflammation in the osteoarthritic
knee: Correlating magnetic resonance imaging findings with disease
severity. Arthritis Rheum. 52:3492–3501. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Aigner T, Sachse A, Gebhard PM and Roach
HI: Osteoarthritis: Pathobiology-targets and ways for therapeutic
intervention. Adv Drug Deliv Rev. 58:128–149. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Attur MG, Dave M, Cipolletta C, Kang P,
Goldring MB, Patel IR, Abramson SB and Amin AR: Reversal of
autocrine and paracrine effects of interleukin 1 (IL-1) in human
arthritis by type II IL-1 decoy receptor. Potential for
pharmacological intervention. J Biol Chem. 275:40307–40315. 2000.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Moos V, Fickert S, Müller B, Weber U and
Sieper J: Immunohistological analysis of cytokine expression in
human osteoarthritic and healthy cartilage. J Rheumatol.
26:870–879. 1999.PubMed/NCBI
|
14
|
Bramono DS, Richmond JC, Weitzel PP,
Kaplan DL and Altman GH: Matrix metalloproteinases and their
clinical applications in orthopaedics. Clin Orthop Relat Res.
272–285. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mandal M, Mandal A, Das S, Chakraborti T
and Sajal C: Clinical implications of matrix metalloproteinases.
Mol Cell Biochem. 252:305–329. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Poole AR: Biochemical/immunochemical
biomarkers of osteoarthritis: Utility for prediction of incident or
progressive osteoarthritis. Rheum Dis Clin North Am. 29:803–818.
2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Baker AH, Edwards DR and Murphy G:
Metalloproteinase inhibitors: Biological actions and therapeutic
opportunities. J Cell Sci. 115:3719–3727. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Johnston P, Larson D, Clark IM and
Chojnowski AJ: Metalloproteinase gene expression correlates with
clinical outcome in Dupuytren's disease. J Hand Surg Am.
33:1160–1167. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hayakawa T: Multiple functions of tissue
inhibitors of metalloproteinases (TIMPs): A new aspect involving
osteoclastic bone resorption. J Bone Miner Metab. 20:1–13. 2002.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hernandez-Barrantes S, Bernardo M, Toth M
and Fridman R: Regulation of membrane type-matrix
metalloproteinases. Semin Cancer Biol. 12:131–138. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kobayashi M, Squires GR, Mousa A, Tanzer
M, Zukor DJ, Antoniou J, Feige U and Poole AR: Role of
interleukin-1 and tumor necrosis factor alpha in matrix degradation
of human osteoarthritic cartilage. Arthritis Rheum. 52:128–135.
2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Aida Y, Maeno M, Suzuki N, Shiratsuchi H,
Motohashi M and Matsumura H: The effect of IL-1beta on the
expression of matrix metalloproteinases and tissue inhibitors of
matrix metalloproteinases in human chondrocytes. Life Sci.
77:3210–3221. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yoshida M, Kijima M, Akita M and Beppu T:
Potent and specific inhibition of mammalian histone deacetylase
both in vivo and in vitro by trichostatin A. J Biol Chem.
265:17174–17179. 1990.PubMed/NCBI
|
24
|
Ghosh AK, Mori Y, Dowling E and Varga J:
Trichostatin A blocks TGF-beta-induced collagen gene expression in
skin fibroblasts: Involvement of Sp1. Biochem Biophys Res Commun.
354:420–426. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Piekarz R and Bates S: A review of
depsipeptide and other histone deacetylase inhibitors in clinical
trials. Curr Pharm Des. 10:2289–2298. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Monneret C: Histone deacetylase
inhibitors. Eur J Med Chem. 40:1–13. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Clayton AL, Hazzalin CA and Mahadevan LC:
Enhanced histone acetylation and transcription: A dynamic
perspective. Mol Cell. 23:289–296. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kouzarides T: Chromatin modifications and
their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li B, Carey M and Workman JL: The role of
chromatin during transcription. Cell. 128:707–719. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen WP, Bao JP, Tang JL, Hu PF and Wu LD:
Trichostatin A inhibits expression of cathepsins in experimental
osteoarthritis. Rheumatol Int. 31:1325–1331. 2011. View Article : Google Scholar
|
31
|
Matsushita T, Sasaki H, Takayama K, Ishida
K, Matsumoto T, Kubo S, Matsuzaki T, Nishida K, Kurosaka M and
Kuroda R: The overexpression of SIRT1 inhibited osteoarthritic gene
expression changes induced by interleukin-1β in human chondrocytes.
J Orthop Res. 31:531–537. 2013. View Article : Google Scholar
|
32
|
Zhong HM, Ding QH, Chen WP and Luo RB:
Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities
through inhibition of iNOS and MMP expression, p38 and ERK
phosphorylation and blocking NF-kB nuclear translocation. Int
Immunopharmacol. 17:329–335. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
34
|
Li J, Zhou XD, Yang KH, Fan TD, Chen WP,
Jiang LF, Bao JP, Wu LD and Xiong Y: Hinokitiol reduces matrix
metalloproteinase expression by inhibiting Wnt/β-Catenin signaling
in vitro and in vivo. Int Immunopharmacol. 23:85–91. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee SW, Song YS, Shin SH, Kim KT, Park YC,
Park BS, Yun I, Kim K, Lee SY, Chung WT, et al: Cilostazol protects
rat chondrocytes against nitric oxide-induced apoptosis in vitro
and prevents cartilage destruction in a rat model of
osteoarthritis. Arthritis Rheum. 58:790–800. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bulstra SK, Buurman WA, Walenkamp GH and
Van der Linden AJ: Metabolic characteristics of in vitro cultured
human chondrocytes in relation to the histopathologic grade of
osteoarthritis. Clin Orthop Relat Res. 294–302. 1989.PubMed/NCBI
|
37
|
Schurigt U, Stopfel N, Hückel M, Pfirschke
C, Wiederanders B and Bräuer R: Local expression of matrix
metalloproteinases, cathepsins, and their inhibitors during the
development of murine antigen-induced arthritis. Arthritis Res
Ther. 7:R174–R188. 2005. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Little CB, Barai A, Burkhardt D, Smith SM,
Fosang AJ, Werb Z, Shah M and Thompson EW: Matrix metalloproteinase
13-deficient mice are resistant to osteoarthritic cartilage erosion
but not chondrocyte hypertrophy or osteophyte development.
Arthritis Rheum. 60:3723–3733. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Adcock IM: HDAC inhibitors as
anti-inflammatory agents. Br J Pharmacol. 150:829–831. 2007.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Strahl BD and Allis CD: The language of
covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lauder SN, Carty SM, Carpenter CE, Hill
RJ, Talamas F, Bondeson J, Brennan P and Williams AS:
Interleukin-1beta induced activation of nuclear factor-kappab can
be inhibited by novel pharmacological agents in osteoarthritis.
Rheumatology (Oxford). 46:752–758. 2007. View Article : Google Scholar
|