1
|
Luo Y, Lin L, Bolund L, Jensen TG and
Sørensen CB: Genetically modified pigs for biomedical research. J
Inherit Metab Dis. 35:695–713. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tector AJ and Ford ML: Designing donors:
Nuclease-based genome editing in pigs. Am J Transplant. 15:32015.
View Article : Google Scholar
|
3
|
Tan W, Carlson DF, Lancto CA, Garbe JR,
Webster DA, Hackett PB and Fahrenkrug SC: Efficient nonmeiotic
allele introgression in livestock using custom endonucleases. Proc
Natl Acad Sci USA. 110:16526–16531. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Urnov FD, Rebar EJ, Holmes MC, Zhang HS
and Gregory PD: Genome editing with engineered zinc finger
nucleases. Nat Rev Genet. 11:636–646. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Petersen B, Ahrens H, Herrmann D, Petkov
SG, Frenzel A, Hauschild J, Lucas-Hahn A, Hassel P, Ziegler M,
Baars W, et al: Generation of HHO-1/HA20/GGTA1-ko pigs by using
sleeping beauty transposon and zinc finger nucleases. Transgenic
Res. 23:8612014.
|
6
|
Tang L, Gonzalez R and Dobrinski I:
Germline modification of domestic animals. Anim Reprod. 12:93–104.
2015.PubMed/NCBI
|
7
|
Miller JC, Tan S, Qiao G, Barlow KA, Wang
J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, et al: A TALE
nuclease architecture for efficient genome editing. Nat Biotechnol.
29:143–148. 2011. View
Article : Google Scholar
|
8
|
Yao J, Huang J, Hai T, Wang X, Qin G,
Zhang H, Wu R, Cao C, Xi JJ, Yuan Z and Zhao J: Efficient
bi-allelic gene knockout and site-specific knock-in mediated by
TALENs in pigs. Sci Rep. 4:69262014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pan D, Yuan J, Li X, Feng C, Long C, Cui
H, Wang F and Xu J: Efficient generation of GGTA1-null pigs via
TALENs. Transgenic Res. 22:2462013.
|
10
|
Wiedenheft B, Sternberg SH and Doudna JA:
RNA-guided genetic silencing systems in bacteria and archaea.
Nature. 482:331–338. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jinek M, Chylinski K, Fonfara I, Hauer M,
Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA
endonuclease in adaptive bacterial immunity. Science. 337:816–821.
2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sternberg SH, Redding S, Jinek M, Greene
EC and Doudna JA: DNA interrogation by the CRISPR RNA-guided
endonuclease Cas9. Nature. 507:62–67. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hai T, Teng F, Guo R, Li W and Zhou Q:
One-step generation of knockout pigs by zygote injection of
CRISPR/Cas system. Cell Res. 24:372–375. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Whitworth KM, Lee K, Benne JA, Beaton BP,
Spate LD, Murphy SL, Samuel MS, Mao J, O'Gorman C, Walters EM, et
al: Use of the CRISPR/Cas9 system to produce genetically engineered
pigs from in vitro-derived oocytes and embryos. Biol Reprod.
91:782014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou X, Xin J, Fan N, Zou Q, Huang J,
Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, et al: Generation of
CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear
transfer. Cell Mol Life Sci. 72:1175–1184. 2015. View Article : Google Scholar
|
16
|
Wang T, Wei JJ, Sabatini DM and Lander ES:
Genetic screens in human cells using the CRISPR-Cas9 system.
Science. 343:80–84. 2014. View Article : Google Scholar
|
17
|
Shalem O, Sanjana NE, Hartenian E, Shi X,
Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG and
Zhang F: Genome-Scale CRISPR-Cas9 knockout screening in human
cells. Science. 343:84–87. 2014. View Article : Google Scholar :
|
18
|
Koike-Yusa H, Li Y, Tan EP,
Velasco-Herrera Mdel C and Yusa K: Genome-wide recessive genetic
screening in mammalian cells with a lentiviral CRISPR-guide RNA
library. Nat Biotechnol. 32:267–273. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Doench JG, Hartenian E, Graham DB, Tothova
Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ and Root DE:
Rational design of highly active sgRNAs for CRISPR-Cas9-mediated
gene inactivation. Nat Biotechnol. 32:1262–1267. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wu Z, Xu Z, Zou X, Zeng F, Shi J, Liu D,
Urschitz J, Moisyadi S and Li Z: Pig transgenesis by piggyBac
transposition in combination with somatic cell nuclear transfer.
Transgenic Res. 22:1107–1118. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Deng W, Yang D, Zhao B, Ouyang Z, Song J,
Fan N, Liu Z, Zhao Y, Wu Q, Nashun B, et al: Use of the 2A peptide
for generation of multi-transgenic pigs through a single round of
nuclear transfer. PLoS One. 6:e199862011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kues WA, Petersen B, Mysegades W, Carnwath
JW and Niemann H: Isolation of murine and porcine fetal stem cells
from somatic tissue. Biol Reprod. 72:1020–1028. 2005. View Article : Google Scholar
|
23
|
Zor T and Selinger Z: Linearization of the
Bradford protein assay increases its sensitivity: theoretical and
experimental studies. Anal Biochem. 236:302–308. 1996. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cheng T, Xue X and Fu J: Effect of OLIG1
on the development of oligodendrocytes and myelination in a
neonatal rat PVL model induced by hypoxia-ischemia. Mol Med Rep.
11:2379–2386. 2015.
|
25
|
Gasiunas G, Barrangou R, Horvath P and
Siksnys V: Cas9-crRNA ribonucleoprotein complex mediates specific
DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci
USA. 109:E2579–E2586. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang M, Zhang L, Stevens J and Gibson G:
CRISPR/Cas9 mediated generation of stable chondrocyte cell lines
with targeted gene knockouts; Analysis of an aggrecan knockout cell
line. Bone. 69:118–125. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kim B, Jin D, Kim H, Kim M and Park C:
Analysis of transgene intergration efficiency into porcine fetal
fibroblast using different transfection methods. Reprod Dev Biol.
33:113–117. 2009.
|
28
|
Blanton JR Jr, Bidwell CA, Sanders DA,
Sharkey CM, McFarland DC, Gerrard DE and Grant AL: Plasmid
transfection and retroviral transduction of porcine muscle cells
for cell-mediated gene transfer. J Anim Sci. 78:909–918. 2000.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang
L, Kang Y, Zhao X, Si W, Li W, et al: Generation of gene-modified
cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell
embryos. Cell. 156:836–843. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z,
Zhang X, Zhang P and Huang X: Generation of gene-modified mice via
Cas9/RNA-mediated gene targeting. Cell Res. 23:720–723. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen
Y, Wu L, Li Y, Ma X, Liu M and Li D: CRISPR/Cas-mediated genome
editing in the rat via direct injection of one-cell embryos. Nat
Protoc. 9:2493–2512. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li P, Estrada JL, Burlak C, Montgomery J,
Butler JR, Santos RM, Wang ZY, Paris LL, Blankenship RL, Downey SM,
et al: Efficient generation of genetically distinct pigs in a
single pregnancy using multiplexed single-guide RNA and
carbohydrate selection. Xenotransplantation. 22:20–31. 2015.
View Article : Google Scholar
|
33
|
Zhao Y, Dai Z, Liang Y, Yin M, Ma K, He M,
Ouyang H and Teng CB: Sequence-specific inhibition of microRNA via
CRISPR/CRISPRi system. Sci Rep. 4:39432014.PubMed/NCBI
|
34
|
O'Connell MR, Oakes BL, Sternberg SH,
East-Seletsky A, Kaplan M and Doudna JA: Programmable RNA
recognition and cleavage by CRISPR/Cas9. Nature. 516:263–266. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee GS, Hyun SH, Kim HS, Kim DY, Lee SH,
Lim JM, Lee ES, Kang SK, Lee BC and Hwang WS: Improvement of a
porcine somatic cell nuclear transfer technique by optimizing donor
cell and recipient oocyte preparations. Theriogenology.
59:1949–1957. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wei H, Qing Y, Pan W, Zhao H, Li H, Cheng
W, Zhao L, Xu C, Li H, Li S, et al: Comparison of the efficiency of
Banna miniature inbred pig somatic cell nuclear transfer among
different donor cells. PLoS One. 8:e577282013. View Article : Google Scholar : PubMed/NCBI
|