1
|
Hwang JT, Park IJ, Shin JI, Lee YK, Lee
SK, Baik HW, Ha J and Park OJ: Genistein, EGCG, and capsaicin
inhibit adipocyte differentiation process via activating
AMP-activated protein kinase. Biochem Biophys Res Commun.
338:694–699. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Shimomura I, Hammer RE, Richardson JA,
Ikemoto S, Bashmakov Y, Goldstein JL and Brown MS: Insulin
resistance and diabetes mellitus in transgenic mice expressing
nuclear SREBP-1c in adipose tissue: Model for congenital
generalized lipodystrophy. Gene Dev. 12:3182–3194. 1998. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pandey MK, Sung B, Kunnumakkara AB, Sethi
G, Chaturvedi MM and Aggarwal BB: Berberine modifies cysteine 179
of IkappaBalpha kinase, suppresses nuclear factor-kappaB-regulated
antiapoptotic gene products, and potentiates apoptosis. Cancer Res.
68:5370–5379. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shidfar F, Ebrahimi SS, Hosseini S,
Heydari I, Shidfar S and Hajhassani G: The effects of Berberis
vulgaris fruit extract on serum lipoproteins, apoB, apoA-I,
homocysteine, glycemic control and total antioxidant capacity in
type 2 diabetic patients. Iran J Pharm Res. 11:643–652.
2012.PubMed/NCBI
|
5
|
Chang XX, Yan HM, Xu Q, Xia MF, Bian H,
Zhu TF and Gao X: The effects of berberine on hyperhomocysteinemia
and hyperlipidemia in rats fed with a long-term high-fat diet.
Lipids Health Dis. 11:862012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kim M, Shin MS, Lee JM, Cho HS, Kim CJ,
Kim YJ, Choi HR and Jeon JW: Inhibitory effects of Isoquinoline
Alkaloid Berberine on ischemia-induced apoptosis via activation of
Phosphoinositide 3-kinase/protein Kinase B signaling pathway. Int
Neurourol J. 18:115–125. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang X, Gu L, Li J, Shah N, He J, Yang L,
Hu Q and Zhou M: Degradation of MDM2 by the interaction between
berberine and DAXX leads to potent apoptosis in MDM2-overexpressing
cancer cells. Cancer Res. 70:9895–9904. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li J, Shen L, Lu FR, Qin Y, Chen R, Li J,
Li Y, Zhan HZ and He YQ: Plumbagin inhibits cell growth and
potentiates apoptosis in human gastric cancer cells in vitro
through the NF-κB signaling pathway. Acta Pharmacol Sin.
33:242–249. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yu FS, Yang JS, Lin HJ, Yu CS, Tan TW, Lin
YT, Lin CC, Lu HF and Chung JG: Berberine inhibits WEHI-3 leukemia
cells in vivo. In Vivo. 21:407–412. 2007.PubMed/NCBI
|
10
|
Mantena SK, Sharma SD and Katiyar SK:
Berberine inhibits growth, induces G1 arrest and apoptosis in human
epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin
cascade, disruption of mitochondrial membrane potential and
cleavage of caspase 3 and PARP. Carcinogenesis. 27:2018–2027. 2006.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Hu Y and Davies GE: Berberine inhibits
adipogenesis in high-fat diet-induced obesity mice. Fitoterapia.
81:358–366. 2010. View Article : Google Scholar
|
12
|
Pham TP, Kwon J and Shin J: Berberine
exerts anti-adipogenic activity through up-regulation of C/EBP
inhibitors, CHOP and DEC2. Biochem Biophys Res Commun. 413:376–382.
2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hwang HW and Mendell JT: MicroRNAs in cell
proliferation, cell death, and tumorigenesis. Br J Cancer.
94:776–780. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
16
|
He L and Hannon GJ: MicroRNAs: Small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Yu Z, Jian Z, Shen SH, Purisima E and Wang
E: Global analysis of microRNA target gene expression reveals that
miRNA targets are lower expressed in mature mouse and Drosophila
tissues than in the embryos. Nucleic Acids Res. 35:152–164. 2007.
View Article : Google Scholar :
|
18
|
Kang T, Lu W, Xu W, Anderson L, Bacanamwo
M, Thompson W, Chen YE and Liu D: MicroRNA-27 (miR-27) targets
prohibitin and impairs adipocyte differentiation and mitochondrial
function in human adipose-derived stem cells. J Biol Chem.
288:34394–34402. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hu HY, Li KP, Wang XJ, Liu Y, Lu ZG, Dong
RH, Guo HB and Zhang MX: Set9, NF-κB, and microRNA-21 mediate
berberine-induced apoptosis of human multiple myeloma cells. Acta
Pharmacol Sin. 34:157–166. 2013. View Article : Google Scholar
|
20
|
Ortiz LM, Lombardi P, Tillhon M and
Scovassi AI: Berberine, an epiphany against cancer. Molecules.
19:12349–12367. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kim JB, Yu JH, Ko E, Lee KW, Song AK, Park
SY, Shin I, Han W and Noh DY: The alkaloid Berberine inhibits the
growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell
lines by inducing cell cycle arrest. Phytomedicine. 17:436–440.
2010. View Article : Google Scholar
|
23
|
Lee HW, Suh JH, Kim HN, Kim AY, Park SY,
Shin CS, Choi JY and Kim JB: Berberine promotes osteoblast
differentiation by Runx2 activation with p38 MAPK. J Bone Miner
Res. 23:1227–1237. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cui G, Qin X, Zhang Y, Gong Z, Ge B and
Zang YQ: Berberine differentially modulates the activities of ERK,
p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation
in type 1 diabetic mice. J Biol Chem. 284:28420–28429. 2009.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lo TF, Tsai WC and Chen ST:
MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates
human methionine adenosyltransferases 2A and 2B and inhibits
hepatoma cell growth. PloS One. 8:e756282013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS,
Yao CH, Zhu BY, Gao ZP, Zhang L and Liao DF: MicroRNA-375 promotes
3T3-L1 adipocyte differentiation through modulation of
extracellular signal-regulated kinase signalling. Clin Exp
Pharmacol Physiol. 38:239–246. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Andersen DC, Jensen CH, Schneider M,
Nossent AY, Eskildsen T, Hansen JL, Teisner B and Sheikh SP:
MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in
proliferating 3T3-L1 preadipocytes. Exp Cell Res. 316:1681–1691.
2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang M and Chen L: Berberine in type 2
diabetes therapy: A new perspective for an old antidiarrheal drug?
Acta Pharm Sin B. 2:379–386. 2012. View Article : Google Scholar
|
29
|
Huang C, Zhang Y, Gong Z, Sheng X, Li Z,
Zhang W and Qin Y: Berberine inhibits 3T3-L1 adipocyte
differentiation through the PPARgamma pathway. Biochem Biophys Res
Commun. 348:571–578. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ko BS, Choi SB, Park SK, Jang JS, Kim YE
and Park S: Insulin sensitizing and insulinotropic action of
berberine from Cortidis rhizoma. Biol Pharm Bull. 28:1431–1437.
2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Belfort R, Berria R, Cornell J and Cusi K:
Fenofibrate reduces systemic inflammation markers independent of
its effects on lipid and glucose metabolism in patients with the
metabolic syndrome. J Clin Endocrinol Metab. 95:829–836. 2010.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Lee JJ, Drakaki A, Iliopoulos D and Struhl
K: MiR-27b targets PPARγ to inhibit growth, tumor progression and
the inflammatory response in neuroblastoma cells. Oncogene.
31:3818–3825. 2012. View Article : Google Scholar
|
33
|
Pan S, Yang X, Jia Y, Li R and Zhao R:
Microvesicle-shuttled miR-130b reduces fat deposition in recipient
primary cultured porcine adipocytes by inhibiting PPAR-γ
expression. J Cell Physiol. 229:631–639. 2014. View Article : Google Scholar
|