Open Access

Transcriptional profile of SH-SY5Y human neuroblastoma cells transfected by Toxoplasma rhoptry protein 16

  • Authors:
    • Weiwei Fan
    • Shuang Chang
    • Xiumei Shan
    • Dejun Gao
    • Steven Qian Zhang
    • Jin Zhang
    • Nan Jiang
    • Duan Ma
    • Zuohua Mao
  • View Affiliations

  • Published online on: September 21, 2016     https://doi.org/10.3892/mmr.2016.5758
  • Pages: 4099-4108
  • Copyright: © Fan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Toxoplasma rhoptry protein 16 (ROP16) is crucial in the host-pathogen interaction by acting as a virulent factor during invasion. To improve understanding of the molecular function underlying the effect of ROP16 on host cells, the present study analyzed the transcriptional profile of genes in the ROP16‑transfected SH‑SY5Y human neuroblastoma cell line. The transcriptional profile of the SH‑SY5Y human neuroblastoma cell line overexpressing ROP16 were determined by microarray analysis in order to determine the host neural cell response to the virulent factor. Functional analysis was performed using the Protein Analysis Through Evolutionary Relationships classification system. The ToppGene Suite was used to select candidate genes from the differentially expressed genes. A protein‑protein interaction network was constructed using Cytoscape software according to the interaction associations determined using the Search Tool for the Retrieval of Interacting Genes/Proteins. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis of the selected genes confirmed the results of the microarray. The results showed that 383 genes were differentially expressed in response to ROP16 transfection, of which 138 genes were upregulated and 245 genes were downregulated. Functional analysis indicated that the differentially expressed genes (DEGs) were involved in several biological processes, including developmental process, biological regulation and apoptotic process. A total of 15 candidate genes from the DEGs were screened using the ToppGene Suite. No significant differences in expression were observed between the RT‑qPCR data and the microarray data. Transfection with ROP16 resulted in alterations of several biological processes, including nervous system development, apoptosis and transcriptional regulation. Several genes, including CXCL12, BAI1, ZIC2, RBMX, RASSF6, MAGE‑A6 and HOX, were identified as significant DEGs. Taken together, these results may contribute to understanding the mechanisms underlying the functions of ROP16 and provide scope for further investigation of the pathogenesis of Toxoplasma gondii.
View Figures
View References

Related Articles

Journal Cover

November-2016
Volume 14 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Fan W, Chang S, Shan X, Gao D, Zhang SQ, Zhang J, Jiang N, Ma D and Mao Z: Transcriptional profile of SH-SY5Y human neuroblastoma cells transfected by Toxoplasma rhoptry protein 16. Mol Med Rep 14: 4099-4108, 2016.
APA
Fan, W., Chang, S., Shan, X., Gao, D., Zhang, S.Q., Zhang, J. ... Mao, Z. (2016). Transcriptional profile of SH-SY5Y human neuroblastoma cells transfected by Toxoplasma rhoptry protein 16. Molecular Medicine Reports, 14, 4099-4108. https://doi.org/10.3892/mmr.2016.5758
MLA
Fan, W., Chang, S., Shan, X., Gao, D., Zhang, S. Q., Zhang, J., Jiang, N., Ma, D., Mao, Z."Transcriptional profile of SH-SY5Y human neuroblastoma cells transfected by Toxoplasma rhoptry protein 16". Molecular Medicine Reports 14.5 (2016): 4099-4108.
Chicago
Fan, W., Chang, S., Shan, X., Gao, D., Zhang, S. Q., Zhang, J., Jiang, N., Ma, D., Mao, Z."Transcriptional profile of SH-SY5Y human neuroblastoma cells transfected by Toxoplasma rhoptry protein 16". Molecular Medicine Reports 14, no. 5 (2016): 4099-4108. https://doi.org/10.3892/mmr.2016.5758