1
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gladson CL and Cheresh DA: Glioblastoma
expression of vitronectin and the alpha v beta 3 integrin. Adhesion
mechanism for transformed glial cells. J Clin Invest. 88:1924–1932.
1991. View Article : Google Scholar : PubMed/NCBI
|
3
|
Veikkola T, Karkkainen M, Claesson-Welsh L
and Alitalo K: Regulation of angiogenesis via vascular endothelial
growth factor receptors. Cancer Res. 60:203–212. 2000.PubMed/NCBI
|
4
|
Bhagwat SV, Lahdenranta J, Giordano R,
Arap W, Pasqualini R and Shapiro LH: CD13/APN is activated by
angiogenic signals and is essential for capillary tube formation.
Blood. 97:652–659. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang RE, Niu Y, Wu H, Amin MN and Cai J:
Development of NGR peptide-based agents for tumor imaging. Am J
Nucl Med Mol Imaging. 1:36–46. 2011.PubMed/NCBI
|
6
|
Kim DW, Kim WH, Kim MH and Kim CG: Novel
Tc-99m labeled ELR-containing 6-mer peptides for tumor imaging in
epidermoid carcinoma xenografts model: A pilot study. Ann Nucl Med.
27:892–897. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lee Y, Kang DK, Chang SI, Han MH and Kang
IC: High-throughput screening of novel peptide inhibitors of an
integrin receptor from the hexapeptide library by using a protein
microarray chip. J Biomol Screen. 9:687–694. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Choi Y, Kim E, Lee Y, Han MH and Kang IC:
Site-specific inhibition of integrin alpha v beta 3-vitronectin
association by a ser-asp-val sequence through an
Arg-Gly-Asp-binding site of the integrin. Proteomics. 10:72–80.
2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bang JY, Kim EY, Kang DK, Chang SI, Han
MH, Baek KH and Kang IC: Pharmacoproteomic analysis of a novel
cell-permeable peptide inhibitor of tumor-induced angiogenesis. Mol
Cell Proteomics. 10:M110.005264. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Dutta AK and Chacko A: Head mass in
chronic pancreatitis: Inflammatory or malignant. World J
Gastrointest Endosc. 7:258–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Takamochi K, Yoshida J, Murakami K, Niho
S, Ishii G, Nishimura M, Nishiwaki Y, Suzuki K and Nagai K:
Pitfalls in lymph node staging with positron emission tomography in
non-small cell lung cancer patients. Lung Cancer. 47:235–242. 2005.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Kubota R, Kubota K, Yamada S, Tada M, Ido
T and Tamahashi N: Microautoradiographic study for the
differentiation of intratumoral macrophages, granulation tissues
and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose
uptake. J Nucl Med. 35:104–112. 1994.PubMed/NCBI
|
13
|
Kim DW, Kim WH, Kim MH and Kim CG:
Synthesis and evaluation of novel Tc-99m labeled NGR-containing
hexapeptides as tumor imaging agents. J Labelled Comp Radiopharm.
58:30–35. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu C, Wei J, Gao K and Wang Y:
Dibenzothiazoles as novel amyloid-imaging agents. Bioorg Med Chem.
15:2789–2796. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Albelda SM and Buck CA: Integrins and
other cell adhesion molecules. FASEB J. 4:2868–2880.
1990.PubMed/NCBI
|
16
|
Humphries MJ: Integrin structure. Biochem
Soc Trans. 28:311–339. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mousa SA: Anti-integrin as novel
drug-discovery targets: Potential therapeutic and diagnostic
implications. Curr Opin Chem Biol. 6:534–541. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tucker GC: Inhibitors of integrins. Curr
Opin Pharmacol. 2:394–402. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Carman CV: Overview: Imaging in the study
of integrins. Methods Mol Biol. 757:159–189. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gaertner FC, Kessler H, Wester HJ,
Schwaiger M and Beer AJ: Radiolabelled RGD peptides for imaging and
therapy. Eur J Nucl Med Mol Imaging 39 (Suppl 1). 126–138. 2012.
View Article : Google Scholar
|
21
|
Shi P, Chen H, Cho MR and Stroscio MA:
Peptide-directed binding of quantum dots to integrins in human
fibroblast. IEEE Trans Nanobioscience. 5:15–19. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu S and Edwards DS: 99mTc-Labeled small
peptides as diagnostic radiopharmaceuticals. Chem Rev.
99:2235–2268. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
van Waarde A, Jager PL, Ishiwata K,
Dierckx RA and Elsinga PH: Comparison of sigma-ligands and
metabolic PET tracers for differentiating tumor from inflammation.
J Nucl Med. 47:150–154. 2006.PubMed/NCBI
|
24
|
Sugae S, Suzuki A, Takahashi N, Minamimoto
R, Cheng C, Theeraladanon C, Endo I, Togo S, Inoue T and Shimada H:
Fluorine-18-labeled 5-fluorouracil is a useful radiotracer for
differentiation of malignant tumors from inflammatory lesions. Ann
Nucl Med. 22:65–72. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fazaeli Y, Jalilian A, Amini M, Ardaneh K,
Rahiminejad A, Bolourinovin F, Moradkhani S and Majdabadi A:
Development of a (68)Ga-fluorinated porphyrin complex as a possible
PET imaging agent. Nucl Med Mol Imaging. 46:20–26. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shin KH, Park SA, Kim SY, Lee SJ, Oh SJ
and Kim JS: Effect of animal condition and fluvoxamine on the
result of [18F]N-3-Fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)
Nortropane ([18F]FP-CIT) PET study in mice. Nucl Med Mol Imaging.
46:27–33. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Berger M, Gould MK and Barnett PG: The
cost of positron emission tomography in six United States veterans
affairs hospitals and two academic medical centers. AJR Am J
Roentgenol. 181:359–365. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Matthews KM, Bowyer TW, Saey PR and Payne
RF: The workshop on signatures of medical and industrial isotope
production-WOSMIP; Strassoldo, Italy, 1–3 July 2009. J Environ
Radioact. 110:1–6. 2012. View Article : Google Scholar : PubMed/NCBI
|