1
|
Tarbell JM, Shi ZD, Dunn J and Jo H: Fluid
mechanics, arterial disease, and gene expression. Annu Rev Fluid
Mech. 46:591–614. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Resnick N, Yahav H, Shay-Salit A, Shushy
M, Schubert S, Zilberman LC and Wofovitz E: Fluid shear stress and
the vascular endothelium: For better and for worse. Prog Biophys
Mol Biol. 81:177–199. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chatzizisis YS, Coskun AU, Jonas M,
Edelman ER, Feldman CL and Stone PH: Role of endothelial shear
stress in the natural history of coronary atherosclerosis and
vascular remodeling: Molecular, cellular, and vascular behavior. J
Am Coll Cardiol. 49:2379–2393. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gimbrone MA Jr, Topper JN, Nagel T,
Anderson KR and Garcia-Cardeña G: Endothelial dysfunction,
hemodynamic forces, and atherogenesis. Ann N Y Acad Sci.
902:230–239, 239–240. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cunningham KS and Gotlieb AI: The role of
shear stress in the pathogenesis of atherosclerosis. Lab Invest.
85:9–23. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ramadoss J, Pastore MB and Magness RR:
Endothelial caveolar subcellular domain regulation of endothelial
nitric oxide synthase. Clin Exp Pharmacol Physiol. 40:753–764.
2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kolluru GK, Siamwala JH and Chatterjee S:
eNOS phosphorylation in health and disease. Biochimie.
92:1186–1198. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Toker A and Newton AC: Cellular signaling:
Pivoting around PDK-1. Cell. 103:185–188. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Maroski J, Vorderwülbecke BJ, Fiedorowicz
K, Da S, ilva-Azevedo L, Siegel G, Marki A, Pries AR and Zakrzewicz
A: Shear stress increases endothelial hyaluronan synthase2 and
hyaluronan synthesis especially in regard to an atheroprotective
flow profile. Exp Physiol. 96:977–986. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Michell BJ, Harris MB, Chen ZP, Ju H,
Venema VJ, Blackstone MA, Huang W, Venema RC and Kemp BE:
Identification of regulatory sites of phosphorylation of the bovine
endothelial nitric-oxide synthase at serine 617 and serine 635. J
Biol Chem. 277:42344–42351. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dimmeler S, Fleming I, Fisslthaler B,
Hermann C, Busse R and Zeiher AM: Activation of nitric oxide
synthase in endothelial cells by Akt-dependent phosphorylation.
Nature. 399:601–605. 1999. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Boo YC, Sorescu G, Boyd N, Shiojima I,
Walsh K, Du J and Jo H: Shear stress stimulates phosphorylation of
endothelial nitric-oxide synthase at Ser1179 by Akt-independent
mechanisms: Role of protein kinase A. J Biol Chem. 277:3388–3396.
2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang J, Wang Z, Zuo G, Li B, Zhang J,
Tian N and Chen S: Low shear stress induces human vascular
endothelial cell apoptosis by activating Akt signal and increasing
reactive oxygen species. Nan Fang Yi Ke Da Xue Xue Bao. 33:313–317.
2013.PubMed/NCBI
|
14
|
Wang Z, Zhang J, Li B, Gao X, Liu Y, Mao W
and Chen SL: Resveratrol ameliorates low shear stressinduced
oxidative stress by suppressing ERK/eNOSThr495 in endothelial
cells. Mol Med Rep. 10:1964–1972. 2014.PubMed/NCBI
|
15
|
Devika NT and Ali BM Jaffar: Analysing
calcium dependent and independent regulation of eNOS in endothelium
triggered by extracellular signalling events. Mol Biosyst.
9:2653–2664. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Boo YC, Hwang J, Sykes M, Michell BJ, Kemp
BE, Lum H and Jo H: Shear stress stimulates phosphorylation of eNOS
at Ser(635) by a protein kinase A-dependent mechanism. Am J Physiol
Heart Circ Physiol. 283:H1819–H1828. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Walther S, Pluteanu F, Renz S, Nikonova Y,
Maxwell JT, Yang LZ, Schmidt K, Edwards JN, Wakula P, Groschner K,
et al: Urocortin 2 stimulates nitric oxide production in
ventricular myocytes via Akt- and PKA-mediated phosphorylation of
eNOS at serine 1177. Am J Physiol Heart Circ Physiol.
307:H689–H700. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu Z, Xiong Y, Han X, Geng C, Jiang B, Huo
Y and Luo J: Acute mechanical stretch promotes eNOS activation in
venous endothelial cells mainly via PKA and Akt pathways. PLoS One.
8:e713592013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang C, Talukder MA, Varadharaj S,
Velayutham M and Zweier JL: Early ischaemic preconditioning
requires Akt- and PKA-mediated activation of eNOS via serine1176
phosphorylation. Cardiovasc Res. 97:33–43. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Barauna VG, Mantuan PR, Magalhaes FC,
Campos LC and Krieger JE: AT1 receptor blocker potentiates
shear-stress induced nitric oxide production via modulation of eNOS
phosphorylation of residues Thr(495) and Ser(1177.). Biochem
Biophys Res Commun. 441:713–719. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen F, Kumar S, Yu Y, Aggarwal S, Gross
C, Wang Y, Chakraborty T, Verin AD, Catravas JD, Lucas R, et al:
PKC-dependent phosphorylation of eNOS at T495 regulates eNOS
coupling and endothelial barrier function in response to G+
-toxins. PLoS One. 9:e998232014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jiang X, Yang F, Tan H, Liao D, Bryan RM
Jr, Randhawa JK, Rumbaut RE, Durante W, Schafer AI, Yang X and Wang
H: Hyperhomocystinemia impairs endothelial function and eNOS
activity via PKC activation. Arterioscler Thromb Vasc Biol.
25:2515–2521. 2015. View Article : Google Scholar
|
23
|
Sakata K, Kondo T, Mizuno N, Shoji M,
Yasui H, Yamamori T, Inanami O, Yokoo H, Yoshimura N and Hattori Y:
Roles of ROS and PKC-βII in ionizing radiation-induced eNOS
activation in human vascular endothelial cells. Vascul Pharmacol.
70:55–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chu S and Bohlen HG: High concentration of
glucose inhibits glomerular endothelial eNOS through a PKC
mechanism. Am J Physiol Renal Physiol. 287:F384–F392. 2004.
View Article : Google Scholar : PubMed/NCBI
|