Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review)
- Authors:
- Bin Ning
- Yunpeng Zhao
- John A. Buza III
- Wei Li
- Wenzhao Wang
- Tanghong Jia
-
Affiliations: Department of Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China, Department of Orthopedic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China, Department of Orthopedic Surgery, New York University Medical Center, New York, NY 10003, USA - Published online on: January 26, 2017 https://doi.org/10.3892/mmr.2017.6155
- Pages: 1017-1023
-
Copyright: © Ning et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Gomes PS and Fernandes MH: Rodent models in bone-related research: The relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim. 45:14–24. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hobby B and Lee MA: Managing atrophic nonunion in the geriatric population: Incidence, distribution and causes. Orthop Clin North Am. 44:251–256. 2013. View Article : Google Scholar : PubMed/NCBI | |
Edwards BJ, Bunta AD, Lane J, Odvina C, Rao DS, Raisch DW, McKoy JM, Omar I, Belknap SM, Garg V, et al: Bisphosphonates and nonhealing femoral fractures: Analysis of the FDA adverse event reporting system (FAERS) and international safety efforts: A systematic review from the research on adverse drug events and reports (RADAR) project. J Bone Joint Surg Am. 95:297–307. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kleinschmidt K, Ploeger F, Nickel J, Glockenmeier J, Kunz P and Richter W: Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2. Biomaterials. 34:5926–5936. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zara J, Siu RK, Ting K and Soo C: The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res. 89:865–878. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao YP, Tian QY and Liu CJ: Progranulin deficiency exaggerates, whereas progranulin-derived Atsttrin attenuates, severity of dermatitis in mice. FEBS Lett. 587:1805–1810. 2013. View Article : Google Scholar : PubMed/NCBI | |
Szpalski C, Barr J, Wetterau M, Saadeh PB and Warren SM: Cranial bone defects: Current and future strategies. Neurosurgical Focus. 29:E82010. View Article : Google Scholar : PubMed/NCBI | |
Wahl EC, Aronson J, Liu L, Skinner RA, Ronis MJ and Lumpkin CK Jr: Distraction osteogenesis in TNF receptor 1 deficient mice is protected from chronic ethanol exposure. Alcohol. 46:133–138. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Péault B, Chen W, Li W, Corselli M, James AW, Lee M, Siu RK, Shen P, Zheng Z, et al: The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng Part A. 17:2497–2509. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mashiba T, Iwata K, Komatsubara S and Manabe T: Animal models for bone and joint disease. Animal fracture model and fracture healing process. Clin calcium. 21:235–241. 2011.PubMed/NCBI | |
Burg KJ, Porter S and Kellam JF: Biomaterial developments for bone tissue engineering. Biomaterials. 21:2347–2359. 2000. View Article : Google Scholar : PubMed/NCBI | |
Giannoudis PV and Pountos I: Tissue regeneration. The past, the present and the future. Injury. 36:(Suppl 4). S2–S5. 2005. View Article : Google Scholar : PubMed/NCBI | |
Maes C, Carmeliet G and Schipani E: Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol. 8:358–366. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rosen V: BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 20:475–480. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Ye F, Yang R, Lu X, Shi Y, Li L, Fan H and Bu H: Osteoinduction of hydroxyapatite/beta-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 6:1569–1574. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kayal RA, Siqueira M, Alblowi J, McLean J, Krothapalli N, Faibish D, Einhorn TA, Gerstenfeld LC and Graves DT: TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J Bone Miner Res. 25:1604–1615. 2010. View Article : Google Scholar : PubMed/NCBI | |
Holstein JH, Karabin-Kehl B, Scheuer C, Garcia P, Histing T, Meier C, Benninger E, Menger MD and Pohlemann T: Endostatin inhibits Callus remodeling during fracture healing in mice. J Orthop Res. 31:1579–1584. 2013. View Article : Google Scholar : PubMed/NCBI | |
Holstein JH, Matthys R, Histing T, Becker SC, Fiedler M, Garcia P, Meier C, Pohlemann T and Menger MD: Development of a stable closed femoral fracture model in mice. J Surg Res. 153:71–75. 2009. View Article : Google Scholar : PubMed/NCBI | |
O'Neill KR, Stutz CM, Mignemi NA, Burns MC, Murry MR, Nyman JS and Schoenecker JG: Micro-computed tomography assessment of the progression of fracture healing in mice. Bone. 50:1357–1367. 2012. View Article : Google Scholar : PubMed/NCBI | |
Einhorn TA: Enhancement of fracture-healing. J Bone Joint Surg Am. 77:940–956. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kellum E, Starr H, Arounleut P, Immel D, Fulzele S, Wenger K and Hamrick MW: Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume. Bone. 44:17–23. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wigner NA, Kulkarni N, Yakavonis M, Young M, Tinsley B, Meeks B, Einhorn TA and Gerstenfeld LC: Urine matrix metalloproteinases (MMPs) as biomarkers for the progression of fracture healing. Injury. 43:274–278. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, Barnes GL, Graves DT and Einhorn TA: Impaired fracture healing in the absence of TNF-alpha signaling: The role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res. 18:1584–1592. 2003. View Article : Google Scholar : PubMed/NCBI | |
Haddock NT, Wapner K and Levin LS: Vascular bone transfer options in the foot and ankle: A retrospective review and update on strategies. Plast Reconstr Surg. 132:685–693. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao YP, Tian QY, Frenkel S and Liu CJ: The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials. 34:6412–6421. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ben-David D, Srouji S, Shapira-Schweitzer K, Kossover O, Ivanir E, Kuhn G, Müller R, Seliktar D and Livne E: Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials. 34:2902–2910. 2013. View Article : Google Scholar : PubMed/NCBI | |
Annibali S, Cicconetti A, Cristalli MP, Giordano G, Trisi P, Pilloni A and Ottolenghi L: A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration. J Craniofac Surg. 24:866–871. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Wang J, Hou J, Guo H and Liu C: Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials. 34:1514–1528. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Xing L: Ubiquitin e3 ligase itch negatively regulates osteoblast differentiation from mesenchymal progenitor cells. Stem cells. 31:1574–1583. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fricain JC, Schlaubitz S, Le Visage C, Arnault I, Derkaoui SM, Siadous R, Catros S, Lalande C, Bareille R, Renard M, et al: A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials. 34:2947–2959. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Usas A, Lu A, Tang Y, Wang B, Chen CW, Li H, Tebbets JC, Cummins JH and Huard J: BMP2 is superior to BMP4 for promoting human muscle-derived stem cell-mediated bone regeneration in a critical-sized calvarial defect model. Cell transplantat. 22:2393–2408. 2013. View Article : Google Scholar | |
Tanaka K, Tanaka S, Sakai A, Ninomiya T, Arai Y and Nakamura T: Deficiency of vitamin A delays bone healing process in association with reduced BMP2 expression after drill-hole injury in mice. Bone. 47:1006–1012. 2010. View Article : Google Scholar : PubMed/NCBI | |
Katae Y, Tanaka S, Sakai A, Nagashima M, Hirasawa H and Nakamura T: Elcatonin injections suppress systemic bone resorption without affecting cortical bone regeneration after drill-hole injuries in mice. J Orthop Res. 27:1652–1658. 2009. View Article : Google Scholar : PubMed/NCBI | |
Behr B, Leucht P, Longaker MT and Quarto N: Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci USA. 107:11853–11858. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tang N, Song WX, Luo J, Luo X, Chen J, Sharff KA, Bi Y, He BC, Huang JY, Zhu GH, et al: BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med. 13:2448–2464. 2009. View Article : Google Scholar : PubMed/NCBI | |
He YX, Zhang G, Pan XH, Liu Z, Zheng LZ, Chan CW, Lee KM, Cao YP, Li G, Wei L, et al: Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: A drill-hole defect model. Bone. 48:1388–1400. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jawad MU, Fritton KE, Ma T, Ren PG, Goodman SB, Ke HZ, Babij P and Genovese MC: Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J Orthop Res. 31:155–163. 2013. View Article : Google Scholar : PubMed/NCBI | |
Meszaros LB, Usas A, Cooper GM and Huard J: Effect of host sex and sex hormones on muscle-derived stem cell-mediated bone formation and defect healing. Tissue Eng Part A. 18:1751–1759. 2012. View Article : Google Scholar : PubMed/NCBI | |
Behr B, Sorkin M, Lehnhardt M, Renda A, Longaker MT and Quarto N: A comparative analysis of the osteogenic effects of BMP-2, FGF-2, and VEGFA in a calvarial defect model. Tissue Eng Part A. 18:1079–1086. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Li D, Huang X, Lv K, Ongodia D, Zhu L, Zhou L and Li Z: A murine femoral segmental defect model for bone tissue engineering using a novel rigid internal fixation system. J Surg Res. 183:493–502. 2013. View Article : Google Scholar : PubMed/NCBI | |
Manassero M, Viateau V, Matthys R, Deschepper M, Vallefuoco R, Bensidhoum M and Petite H: A novel murine femoral segmental critical-sized defect model stabilized by plate osteosynthesis for bone tissue engineering purposes. Tissue Eng Part C Methods. 19:271–280. 2013. View Article : Google Scholar : PubMed/NCBI | |
Krebsbach PH, Mankani MH, Satomura K, Kuznetsov SA and Robey PG: Repair of craniotomy defects using bone marrow stromal cells. Transplantation. 66:1272–1278. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lee JY, Musgrave D, Pelinkovic D, Fukushima K, Cummins J, Usas A, Robbins P, Fu FH and Huard J: Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J Bone Joint Surg Am. 83-A:1032–1039. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Gilbert JR, Cray JJ Jr, Kubala AA, Shaw MA, Billiar TR and Cooper GM: Accelerated calvarial healing in mice lacking Toll-like receptor 4. PLoS One. 7:e469452012. View Article : Google Scholar : PubMed/NCBI | |
Levi B, Hyun JS, Montoro DT, Lo DD, Chan CK, Hu S, Sun N, Lee M, Grova M, Connolly AJ, et al: In vivo directed differentiation of pluripotent stem cells for skeletal regeneration. Proc Natl Acad Sci USA. 109:20379–20384. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lo DD, Mackanos MA, Chung MT, Hyun JS, Montoro DT, Grova M, Liu C, Wang J, Palanker D, Connolly AJ, et al: Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone. Lasers Surg Med. 44:805–814. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garcia P, Holstein JH, Maier S, Schaumlöffel H, Al-Marrawi F, Hannig M, Pohlemann T and Menger MD: Development of a reliable non-union model in mice. J Surg Res. 147:84–91. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zwingenberger S, Niederlohmann E, Vater C, Rammelt S, Matthys R, Bernhardt R, Valladares RD, Goodman SB and Stiehler M: Establishment of a femoral critical-size bone defect model in immunodeficient mice. J Surg Res. 181:e7–e14. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin EA, Liu CJ, Monroy A, Khurana S and Egol KA: Prevention of atrophic nonunion by the systemic administration of parathyroid hormone (PTH 1–34) in an experimental animal model. J Orthop Trauma. 26:719–723. 2012. View Article : Google Scholar : PubMed/NCBI | |
Holstein JH, Orth M, Scheuer C, Tami A, Becker SC, Garcia P, Histing T, Mörsdorf P, Klein M, Pohlemann T and Menger MD: Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. Bone. 49:1037–1045. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kimelman-Bleich N, Pelled G, Sheyn D, Kallai I, Zilberman Y, Mizrahi O, Tal Y, Tawackoli W, Gazit Z and Gazit D: The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials. 30:4639–4648. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moutsatsos IK, Turgeman G, Zhou S, Kurkalli BG, Pelled G, Tzur L, Kelley P, Stumm N, Mi S, Müller R, et al: Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther. 3:449–461. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W, Gazit Z and Gazit D: Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther. 19:53–59. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tai K, Pelled G, Sheyn D, Bershteyn A, Han L, Kallai I, Zilberman Y, Ortiz C and Gazit D: Nanobiomechanics of repair bone regenerated by genetically modified mesenchymal stem cells. Tissue Eng Part A. 14:1709–1720. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bergeron E, Leblanc E, Drevelle O, Giguère R, Beauvais S, Grenier G and Faucheux N: The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng Part A. 18:342–352. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kamiya N: The role of BMPs in bone anabolism and their potential targets SOST and DKK1. Curr Mol Pharmacol. 5:153–163. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Jiang W, Huang J, He BC, Zuo GW, Zhang W, Luo Q, Shi Q, Zhang BQ and Wagner ER: Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J Bone Miner Res. 25:2447–2459. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wagner-Ecker M, Voltz P, Egermann M and Richter W: The collagen component of biological bone graft substitutes promotes ectopic bone formation by human mesenchymal stem cells. Acta Biomater. 9:7298–7307. 2013. View Article : Google Scholar : PubMed/NCBI | |
Frescaline G, Bouderlique T, Mansoor L, Carpentier G, Baroukh B, Sineriz F, Trouillas M, Saffar JL, Courty J, Lataillade JJ, et al: Glycosaminoglycan mimetic associated to human mesenchymal stem cell-based scaffolds inhibit ectopic bone formation, but induce angiogenesis in vivo. Tissue Eng Part A. 19:1641–1653. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hasharoni A, Zilberman Y, Turgeman G, Helm GA, Liebergall M and Gazit D: Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J Neurosurg Spine. 3:47–52. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sheyn D, Pelled G, Zilberman Y, Talasazan F, Frank JM, Gazit D and Gazit Z: Nonvirally engineered porcine adipose tissue-derived stem cells: Use in posterior spinal fusion. Stem cells. 26:1056–1064. 2008. View Article : Google Scholar : PubMed/NCBI | |
Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R and Olsen BR: Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 16:1400–1406. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shimono K, Tung WE, Macolino C, Chi AH, Didizian JH, Mundy C, Chandraratna RA, Mishina Y, Enomoto-Iwamoto M, Pacifici M and Iwamoto M: Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat Med. 17:454–460. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eyckmans J, Roberts SJ, Bolander J, Schrooten J, Chen CS and Luyten FP: Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors. Biomaterials. 34:4612–4621. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aalami OO, Nacamuli RP, Lenton KA, Cowan CM, Fang TD, Fong KD, Shi YY, Song HM, Sahar DE and Longaker MT: Applications of a mouse model of calvarial healing: Differences in regenerative abilities of juveniles and adults. Plast Reconstr Surg. 114:713–720. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Yu H, Gong W, Zhang L, Jia T, Wooley PH and Yang SY: The effect of osteoprotegerin gene modification on wear debris-induced osteolysis in a murine model of knee prosthesis failure. Biomaterials. 30:6102–6108. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baron R and Kneissel M: WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med. 19:179–192. 2013. View Article : Google Scholar : PubMed/NCBI | |
Seto J, Busse B, Gupta HS, Schäfer C, Krauss S, Dunlop JW, Masic A, Kerschnitzki M, Zaslansky P, Boesecke P, et al: Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice. PLoS One. 7:e473382012. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Xue M, Wang Q, Schwarz EM, O'Keefe RJ and Zhang X: Tamoxifen-inducible CreER-mediated gene targeting in periosteum via bone-graft transplantation. J Bone Joint Surg Am. 90:(Suppl 1). S9–S13. 2008. View Article : Google Scholar | |
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F and Zabel B: Of mice and models: Improved animal models for biomedical research. Physiol Genomics. 11:115–132. 2002. View Article : Google Scholar : PubMed/NCBI | |
Matsushita Y, Sakamoto K, Tamamura Y, Shibata Y, Minamizato T, Kihara T, Ito M, Katsube K, Hiraoka S, Koseki H, et al: CCN3 protein participates in bone regeneration as an inhibitory factor. J Biol Chem. 288:19973–19985. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gualeni B, de Vernejoul MC, Marty-Morieux C, De Leonardis F, Franchi M, Monti L, Forlino A, Houillier P, Rossi A and Geoffroy V: Alteration of proteoglycan sulfation affects bone growth and remodeling. Bone. 54:83–91. 2013. View Article : Google Scholar : PubMed/NCBI | |
do Soung Y, Gentile MA, le Duong T and Drissi H: Effects of pharmacological inhibition of cathepsin K on fracture repair in mice. Bone. 55:248–255. 2013. View Article : Google Scholar : PubMed/NCBI | |
Colnot C, Zhang X and Tate Knothe ML: Current insights on the regenerative potential of the periosteum: Molecular, cellular, and endogenous engineering approaches. J Orthop Res. 30:1869–1878. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yu YY, Bahney C, Hu D, Marcucio RS and Miclau T III: Creating rigidly stabilized fractures for assessing intramembranous ossification, distraction osteogenesis, or healing of critical sized defects. J Vis Exp pii. 35522012. | |
Bose S, Roy M and Bandyopadhyay A: Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30:546–554. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yun YR, Jang JH, Jeon E, Kang W, Lee S, Won JE, Kim HW and Wall I: Administration of growth factors for bone regeneration. Regen Med. 7:369–385. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao YP, Tian QY, Liu B, Cuellar J, Richbourgh B, Jia TH and Liu CJ: Progranulin knockout accelerates intervertebral disc degeneration in aging mice. Sci Rep. 5:91022015. View Article : Google Scholar : PubMed/NCBI |