TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension
- Authors:
- Fang Huang
- Min Ni
- Jing‑Ming Zhang
- Dong‑Jie Li
- Fu‑Ming Shen
-
Affiliations: Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China - Published online on: January 30, 2017 https://doi.org/10.3892/mmr.2017.6158
- Pages: 1900-1908
This article is mentioned in:
Abstract
Poulter NR, Prabhakaran D and Caulfield M: Hypertension. Lancet. 386:801–812. 2015. View Article : Google Scholar : PubMed/NCBI | |
He D, Fu M, Miao S, Hotta K, Chandak GR and Xi B: FTO gene variant and risk of hypertension: A meta-analysis of 57,464 hypertensive cases and 41,256 controls. Metabolism. 63:633–639. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Hu CY, Lu SS, Gong FF, Feng F, Qian ZZ, Ding XX, Yang HY and Sun YH: Association between methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and essential hypertension: A systematic review and meta-analysis. Metabolism. 63:1503–1511. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rocha NG, Templeton DL, Greiner JJ, Stauffer BL and DeSouza CA: Metabolic syndrome and endothelin-1 mediated vasoconstrictor tone in overweight/obese adults. Metabolism. 63:951–956. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ait Aissa K, Lagrange J, Mohamadi A, Louis H, Houppert B, Challande P, Wahl D, Lacolley P and Regnault V: Vascular smooth muscle cells are responsible for a prothrombotic phenotype of spontaneously hypertensive rat arteries. Arterioscler Thromb Vasc Biol. 35:930–937. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Li Y, Wang C, Wu Y, Cui W, Miwa T, Sato S, Li H, Song WC and Du J: Complement 5a receptor mediates angiotensin II-induced cardiac inflammation and remodeling. Arterioscler Thromb Vasc Biol. 34:1240–1248. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Jin X, Yan J, Entman ML and Wang Y: CXCR6 plays a critical role in angiotensin II-induced renal injury and fibrosis. Arterioscler Thromb Vasc Biol. 34:1422–1428. 2014. View Article : Google Scholar : PubMed/NCBI | |
Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Yoshimura K, Aoki H, Tsutsui H, Noda T, et al: Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm. Arterioscler Thromb Vasc Biol. 35:127–136. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kigawa Y, Miyazaki T, Lei XF, Nakamachi T, Oguchi T, Kim-Kaneyama JR, Taniyama M, Tsunawaki S, Shioda S and Miyazaki A: NADPH oxidase deficiency exacerbates angiotensin II-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol. 34:2413–2420. 2014. View Article : Google Scholar : PubMed/NCBI | |
Krishna SM, Seto SW, Jose RJ, Biros E, Moran CS, Wang Y, Clancy P and Golledge J: A peptide antagonist of thrombospondin-1 promotes abdominal aortic aneurysm progression in the angiotensin II-infused apolipoprotein-E-deficient mouse. Arterioscler Thromb Vasc Biol. 35:389–398. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davis FM, Rateri DL, Balakrishnan A, Howatt DA, Strickland DK, Muratoglu SC, Haggerty CM, Fornwalt BK, Cassis LA and Daugherty A: Smooth muscle cell deletion of low-density lipoprotein receptor-related protein 1 augments angiotensin II-induced superior mesenteric arterial and ascending aortic aneurysms. Arterioscler Thromb Vasc Biol. 35:155–162. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zreikat HH, Harpe SE, Slattum PW, Mays DP, Essah PA and Cheang KI: Effect of Renin-Angiotensin system inhibition on cardiovascular events in older hypertensive patients with metabolic syndrome. Metabolism. 63:392–399. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kristensen KE, Torp-Pedersen C, Gislason GH, Egfjord M, Rasmussen HB and Hansen PR: Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in patients with abdominal aortic aneurysms: Nation-wide cohort study. Arterioscler Thromb Vasc Biol. 35:733–740. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pruthi D, McCurley A, Aronovitz M, Galayda C, Karumanchi SA and Jaffe IZ: Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler Thromb Vasc Biol. 34:355–364. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alias S, Redwan B, Panzenböck A, Winter MP, Schubert U, Voswinckel R, Frey MK, Jakowitsch J, Alimohammadi A, Hobohm L, et al: Defective angiogenesis delays thrombus resolution: A potential pathogenetic mechanism underlying chronic thromboembolic pulmonary hypertension. Arterioscler Thromb Vasc Biol. 34:810–819. 2014. View Article : Google Scholar : PubMed/NCBI | |
Manka D, Chatterjee TK, Stoll LL, Basford JE, Konaniah ES, Srinivasan R, Bogdanov VY, Tang Y, Blomkalns AL, Hui DY and Weintraub NL: Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: Role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol. 34:1723–1730. 2014. View Article : Google Scholar : PubMed/NCBI | |
Demer LL and Tintut Y: Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 34:715–723. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S and Patapoutian A: A TRP channel that senses cold stimuli and menthol. Cell. 108:705–715. 2002. View Article : Google Scholar : PubMed/NCBI | |
McKemy DD, Neuhausser WM and Julius D: Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 416:52–58. 2002. View Article : Google Scholar : PubMed/NCBI | |
Almeida MC, Hew-Butler T, Soriano RN, Rao S, Wang W, Wang J, Tamayo N, Oliveira DL, Nucci TB, Aryal P, et al: Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci. 32:2086–2099. 2012. View Article : Google Scholar : PubMed/NCBI | |
Knowlton WM, Daniels RL, Palkar R, McCoy DD and McKemy DD: Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One. 6:e258942011. View Article : Google Scholar : PubMed/NCBI | |
Morenilla-Palao C, Luis E, Fernández-Peña C, Quintero E, Weaver JL, Bayliss DA and Viana F: Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation. Cell Rep. 8:1571–1582. 2014. View Article : Google Scholar : PubMed/NCBI | |
Borrelli F, Pagano E, Romano B, Panzera S, Maiello F, Coppola D, De Petrocellis L, Buono L, Orlando P and Izzo AA: Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis. 35:2787–2797. 2014. View Article : Google Scholar : PubMed/NCBI | |
Patel R, Gonçalves L, Leveridge M, Mack SR, Hendrick A, Brice NL and Dickenson AH: Anti-hyperalgesic effects of a novel TRPM8 agonist in neuropathic rats: A comparison with topical menthol. Pain. 155:2097–2107. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ramachandran R, Hyun E, Zhao L, Lapointe TK, Chapman K, Hirota CL, Ghosh S, McKemy DD, Vergnolle N, Beck PL, et al: TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci USA. 110:7476–7481. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Yu H, Zhao Z, Luo Z, Chen J, Ni Y, Jin R, Ma L, Wang P, Zhu Z, et al: Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J Mol Cell Biol. 4:88–96. 2012. View Article : Google Scholar : PubMed/NCBI | |
Asuthkar S, Elustondo PA, Demirkhanyan L, Sun X, Baskaran P, Velpula KK, Thyagarajan B, Pavlov EV and Zakharian E: The TRPM8 protein is a testosterone receptor: I. Biochemical evidence for direct TRPM8-testosterone interactions. J Biol Chem. 290:2659–2669. 2015. View Article : Google Scholar : PubMed/NCBI | |
Quallo T, Vastani N, Horridge E, Gentry C, Parra A, Moss S, Viana F, Belmonte C, Andersson DA and Bevan S: TRPM8 is a neuronal osmosensor that regulates eye blinking in mice. Nat Commun. 6:71502015. View Article : Google Scholar : PubMed/NCBI | |
Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P and Zholos AV: Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol. 296:H1868–H1877. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Yang T, Wang P, Ma S and Zhu Z, Pu Y, Li L, Zhao Y, Xiong S, Liu D and Zhu Z: Activation of cold-sensing transient receptor potential melastatin subtype 8 antagonizes vasoconstriction and hypertension through attenuating RhoA/Rho kinase pathway. Hypertension. 63:1354–1363. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen JK, Zhao T, Ni M, Li DJ, Tao X and Shen FM: Downregulation of alpha7 nicotinic acetylcholine receptor in two-kidney one-clip hypertensive rats. BMC Cardiovasc Disord. 12:382012. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Yokoyama U, Yanai C, Ishige R, Kurotaki D, Umemura M, Fujita T, Kubota T, Okumura S, Sata M, et al: Epac1 deficiency attenuated vascular smooth muscle cell migration and neointimal formation. Arterioscler Thromb Vasc Biol. 35:2617–2625. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weise-Cross L, Taylor JM and Mack CP: Inhibition of diaphanous formin signaling in vivo impairs cardiovascular development and alters smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol. 35:2374–2383. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fernandez I, Martin-Garrido A, Zhou DW, Clempus RE, Seidel-Rogol B, Valdivia A, Lassègue B, García AJ, Griendling KK and San Martin A: Hic-5 mediates TGFβ-induced adhesion in vascular smooth muscle cells by a Nox4-dependent mechanism. Arterioscler Thromb Vasc Biol. 35:1198–1206. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song J, Li J, Hou F, Wang X and Liu B: Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells. Metabolism. 64:428–437. 2015. View Article : Google Scholar : PubMed/NCBI | |
Omodei D, Pucino V, Labruna G, Procaccini C, Galgani M, Perna F, Pirozzi D, De Caprio C, Marone G, Fontana L, et al: Immune-metabolic profiling of anorexic patients reveals an anti-oxidant and anti-inflammatory phenotype. Metabolism. 64:396–405. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hwang HJ, Jung TW, Hong HC, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH and Yoo HJ: LECT2 induces atherosclerotic inflammatory reaction via CD209 receptor-mediated JNK phosphorylation in human endothelial cells. Metabolism. 64:1175–1182. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kurano M, Hara M, Satoh H and Tsukamoto K: Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis. Metabolism. 64:588–596. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou XB, Feng YX, Sun Q, Lukowski R, Qiu Y, Spiger K, Li Z, Ruth P, Korth M, Skolnik EY, et al: Nucleoside diphosphate kinase B-activated intermediate conductance potassium channels are critical for neointima formation in mouse carotid arteries. Arterioscler Thromb Vasc Biol. 35:1852–1861. 2015. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lee MJ, Kim EH, Lee SA, Kang YM, Jung CH, Yoon HK, Seol SM, Lee YL, Lee WJ and Park JY: Dehydroepiandrosterone prevents linoleic acid-induced endothelial cell senescence by increasing autophagy. Metabolism. 64:1134–1145. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ray Hamidie RD, Yamada T, Ishizawa R, Saito Y and Masuda K: Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism. 64:1334–1347. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kadota Y, Toyoda T, Hayashi-Kato M, Kitaura Y and Shimomura Y: Octanoic acid promotes branched-chain amino acid catabolisms via the inhibition of hepatic branched-chain alpha-keto acid dehydrogenase kinase in rats. Metabolism. 64:1157–1164. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Bruckbauer A, Li F, Cao Q, Cui X, Wu R, Shi H, Zemel MB and Xue B: Leucine amplifies the effects of metformin on insulin sensitivity and glycemic control in diet-induced obese mice. Metabolism. 64:845–856. 2015. View Article : Google Scholar : PubMed/NCBI | |
Soe NN, Sowden M, Baskaran P, Smolock EM, Kim Y, Nigro P and Berk BC: Cyclophilin A is required for angiotensin II-induced p47phox translocation to caveolae in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 33:2147–2153. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu YJ, Guo X, Li CJ, Li DQ, Zhang J, Yang Y, Kong Y, Guo H, Liu DM and Chen LM: Dipeptidyl peptidase-4 inhibitor, vildagliptin, inhibits pancreatic beta cell apoptosis in association with its effects suppressing endoplasmic reticulum stress in db/db mice. Metabolism. 64:226–235. 2015. View Article : Google Scholar : PubMed/NCBI | |
Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y and Griendling KK: Angiotensin II stimulation of NAD (P)H oxidase activity: Upstream mediators. Circ Res. 91:406–413. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lasségue B, San M, artín A and Griendling KK: Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 110:1364–1390. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kirabo A, Kearns PN, Jarajapu YP, Sasser JM, Oh SP, Grant MB, Kasahara H, Cardounel AJ, Baylis C, Wagner KU and Sayeski PP: Vascular smooth muscle Jak2 mediates angiotensin II-induced hypertension via increased levels of reactive oxygen species. Cardiovasc Res. 91:171–179. 2011. View Article : Google Scholar : PubMed/NCBI | |
Montezano AC, Callera GE, Yogi A, He Y, Tostes RC, He G, Schiffrin EL and Touyz RM: Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through c-Src-regulated redox-sensitive RhoA pathways. Arterioscler Thromb Vasc Biol. 28:1511–1518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Clapham DE, Runnels LW and Strübing C: The trp ion channel family. Nat Rev Neurosci. 2:387–396. 2001. View Article : Google Scholar : PubMed/NCBI | |
Touyz RM, He Y, Montezano AC, Yao G, Chubanov V, Gudermann T and Callera GE: Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by Ang II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 290:R73–R78. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yogi A, Callera GE, Tostes R and Touyz RM: Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol. 296:R201–R207. 2009. View Article : Google Scholar : PubMed/NCBI | |
Callera GE, He Y, Yogi A, Montezano AC, Paravicini T, Yao G and Touyz RM: Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens. 27:155–166. 2009. View Article : Google Scholar : PubMed/NCBI | |
He Y, Yao G, Savoia C and Touyz RM: Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: Role of angiotensin II. Circ Res. 96:207–215. 2005. View Article : Google Scholar : PubMed/NCBI | |
Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, van Leeuwen FN and Touyz RM: Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension. 56:453–462. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Wang M, Fan XH, Chen JH, Guan YY and Tang YB: Upregulation of TRPM7 channels by angiotensin II triggers phenotypic switching of vascular smooth muscle cells of ascending aorta. Circ Res. 111:1137–1146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang XR, Lin MJ, McIntosh LS and Sham JS: Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol. 290:L1267–L1276. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ikeda S, Satoh K, Kikuchi N, Miyata S, Suzuki K, Omura J, Shimizu T, Kobayashi K, Kobayashi K, Fukumoto Y, et al: Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice. Arterioscler Thromb Vasc Biol. 34:1260–1271. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gadang V, Konaniah E, Hui DY and Jaeschke A: Mixed-lineage kinase 3 deficiency promotes neointima formation through increased activation of the RhoA pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 34:1429–1436. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ellawindy A, Satoh K, Sunamura S, Kikuchi N, Suzuki K, Minami T, Ikeda S, Tanaka S, Shimizu T, Enkhjargal B, et al: Rho-Kinase inhibition during early cardiac development causes arrhythmogenic right ventricular cardiomyopathy in mice. Arterioscler Thromb Vasc Biol. 35:2172–2184. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shimokawa H and Satoh K: 2015 ATVB Plenary Lecture: Translational research on rho-kinase in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 35:1756–1769. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu XR, Liu Q, Chen GY, Hu Y, Sham JS and Lin MJ: Down-regulation of TRPM8 in pulmonary arteries of pulmonary hypertensive rats. Cell Physiol Biochem. 31:892–904. 2013. View Article : Google Scholar : PubMed/NCBI | |
Greenberg S: Vascular responses of the perfused intestine to vasoactive agents during the development of two-kidney, one-clip Goldblatt hypertension in dogs. Circ Res. 48:895–906. 1981. View Article : Google Scholar : PubMed/NCBI | |
Morishita R, Higaki J, Miyazaki M and Ogihara T: Possible role of the vascular renin-angiotensin system in hypertension and vascular hypertrophy. Hypertension. 19 Suppl 2:II62–II67. 1992. View Article : Google Scholar : PubMed/NCBI | |
Cervenka L, Horácek V, Vanecková I, Hubácek JA, Oliverio MI, Coffman TM and Navar LG: Essential role of AT1A receptor in the development of 2K1C hypertension. Hypertension. 40:735–741. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xie QY, Sun M, Yang TL and Sun ZL: Losartan reduces monocyte chemoattractant protein-1 expression in aortic tissues of 2K1C hypertensive rats. Int J Cardiol. 110:60–66. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maxwell MH, Lupu AN, Viskoper RJ, Aravena LA and Waks UA: Mechanisms of hypertension during the acute and intermediate phases of the one-clip, two-kidney model in the dog. Circ Res. 40(5 Suppl 1): I24–I28. 1977.PubMed/NCBI | |
Li DJ, Evans RG, Yang ZW, Song SW, Wang P, Ma XJ, Liu C, Xi T, Su DF and Shen FM: Dysfunction of the cholinergic anti-inflammatory pathway mediates organ damage in hypertension. Hypertension. 57:298–307. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jamerson K, Weber MA, Bakris GL, Dahlöf B, Pitt B, Shi V, Hester A, Gupte J, Gatlin M and Velazquez EJ: ACCOMPLISH Trial Investigators: Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 359:2417–2428. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jamerson KA, Devereux R, Bakris GL, Dahlöf B, Pitt B, Velazquez EJ, Weir M, Kelly RY, Hua TA, Hester A and Weber MA: Efficacy and duration of benazepril plus amlodipine or hydrochlorothiazide on 24-h ambulatory systolic blood pressure control. Hypertension. 57:174–179. 2011. View Article : Google Scholar : PubMed/NCBI | |
Valvo E, Casagrande P, Bedogna V, Antiga L, Alberti D, Zamboni M, Perobelli L, Dal Santo F and Maschio G: Systemic and renal effects of a new angiotensin converting enzyme inhibitor, benazepril, in essential hypertension. J Hypertens. 8:991–995. 1990. View Article : Google Scholar : PubMed/NCBI | |
Balfour JA and Goa KL: Benazepril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in hypertension and congestive heart failure. Drugs. 42:511–539. 1991. View Article : Google Scholar : PubMed/NCBI | |
Mochel JP, Fink M, Peyrou M, Soubret A, Giraudel JM and Danhof M: Pharmacokinetic/pharmacodynamic modeling of renin-angiotensin aldosterone biomarkers following angiotensin-converting enzyme (ACE) inhibition therapy with benazepril in dogs. Pharm Res. 32:1931–1946. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassègue B, Griendling KK, Harrison DG and Dikalova AE: Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal. 20:281–294. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Xiang L, Clemmer JS, Mittwede PN and Hester RL: Oxidative stress increases pulmonary vascular permeability in diabetic rats through activation of transient receptor potential melastatin 2 channels. Microcirculation. 21:754–760. 2014. View Article : Google Scholar : PubMed/NCBI | |
Palanivel R, Ganguly R, Turdi S, Xu A and Sweeney G: Adiponectin stimulates Rho-mediated actin cytoskeleton remodeling and glucose uptake via APPL1 in primary cardiomyocytes. Metabolism. 63:1363–1373. 2014. View Article : Google Scholar : PubMed/NCBI | |
Diaz MB, Herzig S and Vegiopoulos A: Thermogenic adipocytes: From cells to physiology and medicine. Metabolism. 63:1238–1249. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun L and Trajkovski M: MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism. 63:272–282. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hondares E, Gallego-Escuredo JM, Flachs P, Frontini A, Cereijo R, Goday A, Perugini J, Kopecky P, Giralt M, Cinti S, et al: Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism. 63:312–317. 2014. View Article : Google Scholar : PubMed/NCBI | |
Boström PA, Fernández-Real JM and Mantzoros C: Irisin in humans: Recent advances and questions for future research. Metabolism. 63:178–180. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsuchiya Y, Ando D, Takamatsu K and Goto K: Resistance exercise induces a greater irisin response than endurance exercise. Metabolism. 64:1042–1050. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sharma AM, Janke J, Gorzelniak K, Engeli S and Luft FC: Angiotensin blockade prevents type 2 diabetes by formation of fat cells. Hypertension. 40:609–611. 2002. View Article : Google Scholar : PubMed/NCBI | |
Santos SH, Braga JF, Mario EG, Pôrto LC, Rodrigues-Machado Mda G, Murari A, Botion LM, Alenina N, Bader M and Santos RA: Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1–7). Arterioscler Thromb Vasc Biol. 30:953–961. 2010. View Article : Google Scholar : PubMed/NCBI |