1
|
Allderdice PW, Davis JG, Miller OJ, Kliner
HP, Warburton D, Miller DA, Allen FH Jr, Abrams CA and McGilvray E:
The 13q-deletion syndrome. Am J Hum Genet. 21:499–512.
1969.PubMed/NCBI
|
2
|
Brown S, Gersen S, Anyane-Yeboa K and
Warburton D: Preliminary definition of a ‘critical region’ of
chromosome 13 in q32: Report of 14 cases with 13q deletions and
review of the literature. Am J Med Genet. 45:52–59. 1993.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Ballarati L, Rossi E, Bonati MT, Gimelli
S, Maraschio P, Finelli P, Giglio S, Lapi E, Bedeschi MF, Guerneri
S, et al: 13q Deletion and central nervous system anomalies:
Further insights from karyotype-phenotype analyses of 14 patients.
J Med Genet. 44:e602007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Walczak-Sztulpa J, Wisniewska M,
Latos-Bielenska A, Linné M, Kelbova C, Belitz B, Pfeiffer L,
Kalscheuer V, Erdogan F, Kuss AW, et al: Chromosome deletions in
13q33-34: Report of four patients and review of the literature. Am
J Med Genet A. 146A:337–342. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Brown S, Russo J, Chitayat D and Warburton
D: The 13q-syndrome: The molecular definition of a critical
deletion region in band 13q32. Am J Hum Genet. 57:859–866.
1995.PubMed/NCBI
|
6
|
Quélin C, Bendavid C, Dubourg C, de la
Rochebrochard C, Lucas J, Henry C, Jaillard S, Loget P, Loeuillet
L, Lacombe D, et al: Twelve new patients with 13q deletion
syndrome: Genotype-phenotype analyses in progress. Eur J Med Genet.
52:41–46. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Garcia NM, Allgood J, Santos LJ, Lonergan
D, Batanian JR, Henkemeyer M, Bartsch O, Schultz RA, Zinn AR and
Baker LA: Deletion mapping of critical region for hypospadias,
penoscrotal transposition and imperforate anus on human chromosome
13. J Pediatr Urol. 2:233–242. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kirchhoff M, Bisgaard AM, Stoeva R,
Dimitrov B, Gillessen-Kaesbach G, Fryns JP, Rose H, Grozdanova L,
Ivanov I, Keymolen K, et al: Phenotype and 244k array-CGH
characterization of chromosome 13q deletions: An update of the
phenotypic map of 13q21.1-qter. Am J Med Genet Part A.
149A:894–905. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shojaei A, Behjati F, Derakhshandeh-Peykar
P, Razzaghy-Azar M, Otukesh H, Kariminejad R, Dowlati MA,
Rashidi-Nezhad A and Tavakkoly-Bazzaz J: Partial trisomy 7q and
monosomy 13q in a child with disorder of sex development:
Phenotypic and genotypic findings. Gene. 517:137–145. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang YF, Ai Q, Huang C, Chen JL, Wang J,
Xie L, Zhang WZ, Yang JF and Tan ZP: A 1.1Mb deletion in distal 13q
deletion syndrome region with congenital heart defect and postaxial
polydactyly: Additional support for a CHD locus at distal 13q34
region. Gene. 528:51–54. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dworschak GC, Draaken M, Marcelis C, et
al: De novo 13q deletions in two patients with mild anorectal
malformations as part of VATER/VACTERL and VATER/VACTERL-like
association and analysis of EFNB2 in patients with anorectal
malformations. Am J Med Genet A. 161A:3035–3041. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
McKay RD: The mechanism of G and C banding
in mammalian metaphase chromosomes. Chromosoma. 44:1–14. 1973.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Walsh LE, Vance GH and Weaver DD: Distal
13q Deletion Syndrome and the VACTERL association: Case report,
literature review, and possible implications. Am J Med Gene.
98:137–144. 2001. View Article : Google Scholar
|
15
|
Kaylor J, Alfaro M, Ishwar A, Sailey C,
Sawyer J and Zarate YA: Molecular and cytogenetic evaluation of a
patient with ring chromosome 13 and discordant results. Cytogenet
Genome Res. 144:104–108. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cain CC, Saul DO, Oehler E, Blakemore K
and Stetten G: Prenatal detection of a subtle unbalanced chromosome
rearrangement by karyotyping, FISH and array comparative genomic
hybridization. Fetal Diagn Ther. 24:286–290. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kataoka A, Hirakawa S, Iwamoto M, Sakumura
Y, Yoshinaga R and Ohba T: Prenatal diagnosis of a case of partial
monosomy/monosomy 13 mosaicism: 46,XX,r(13)(p11q33)/45,XX,-13
suspected by nuchal fold translucency increasing. Kurume Med J.
58:127–130. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Andresen JH, Aftimos S, Doherty E, Love DR
and Battin M: 13q33.2 deletion: A rare cause of ambiguous genitalia
in a male newborn with growth restriction. Acta Paediatr.
99:784–786. 2010.PubMed/NCBI
|
19
|
Mimaki M, Shiihara T, Watanabe M, Hirakata
K, Sakazume S, Ishiguro A, Shimojima K, Yamamoto T, Oka A and
Mizuguchi M: Holoprosencephaly with cerebellar vermis hypoplasia in
13q deletion syndrome: Critical region for cerebellar dysgenesis
within 13q32.2q34. Brain Dev. 37:714–718. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
McMahon CJ, Breathnach C, Betts DR,
Sharkey FH and Greally MT: De Novo interstitial deletion 13q33.3q34
in a male patient with double outlet right ventricle, microcephaly,
dysmorphic craniofacial findings, and motor and developmental
delay. Am J Med Genet A. 167A:1134–1141. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Valdes-Miranda JM, Soto-Alvarez JR,
Toral-Lopez J, González-Huerta L, Perez-Cabrera A, Gonzalez-Monfil
G, Messina-Bass O and Cuevas-Covarrubias S: A novel microdeletion
involving the 13q31.3-q32.1 region in a patient with normal
intelligence. Eur J Med Genet. 57:60–64. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Huang C, Yang YF, Yin N, Chen JL, Wang J,
Zhang H and Tan ZP: Congenital heart defect and mental retardation
in a patient with a 13q33.1–34 deletion. Gene. 498:308–310. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Czeizel A and Ludányi I: An aetiological
study of the VACTERL-association. Eur J Pediatr. 144:331–337. 1985.
View Article : Google Scholar : PubMed/NCBI
|
24
|
McMullen KP, Karnes PS, Moir CR and
Michels VV: Familial recurrence of tracheoesophageal fistula and
associated malformations. Am J Med Genet. 63:525–528. 1996.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Quan L and Smith DW: The VATER
association. Vertebral defects, anal atresia, T-E fistula with
esophageal atresia, radial and rnal dysplasia: A spectrum of
associated defects. J Pediatr. 82:104–107. 1973. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rogers DS, Paidas CN, Morreale RF and
Huthcins GM: Septation of the anorectal and genitourinary tract in
the human embryo: Crucial role of the catenoidal shape of the
urorectal sulcus. Teratology. 66:144–152. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hynes PJ and Fraher JP: The development of
the male genitourinary system. I. The origin of the urorectal
septum and the formation of the perineum. Br J Plast Surg.
57:27–36. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Baskin LS, Erol A, Jegatheesan P, Li Y,
Liu W and Cunha GR: Urethral seam formation and hypospadias. Cell
Tissue Res. 305:379–387. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dravis C, Yokoyama N, Chumley MJ, Cowan
CA, Silvany RE, Shay J, Baker LA and Henkemeyer M: Bidirectional
signaling mediated by ephrin-B2 and EphB2 controls urorectal
development. Dev Biol. 271:272–290. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jenkins D, Bitner-Glindzicz M, Thomasson
L, Malcolm S, Warne SA, Feather SA, Flanagan SE, Ellard S, Bingham
C, Santos L, et al: Mutational analyses of UPIIIA, SHH, EFNB2 and
HNF1beta in persistent cloaca and associated kidney malformations.
J Pediatr Urol. 3:2–9. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Firth HV, Richards SM, Bevan AP, Clayton
S, Corpas M, Rajan D, Van Vooren S, Moreau Y, Pettett RM and Carter
NP: DECIPHER: Database of chromosomal imbalance and phenotype in
humans using ensembl resources. Am J Hum Genet. 84:524–533. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Xin W, Mullen TE, Kiely R, Min J, Feng X,
Cao Y, O'Malley L, Shen Y, Chu-Shore C, Mole SE, et al: CLN5
mutations are frequent in juvenile and late-onset non-Finnish
patients with NCL. Neurology. 74:565–571. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tanaka H, Moroi K, Iwai J, Takahashi H,
Ohnuma N, Hori S, Takimoto M, Nishiyama M, Masaki T, Yanagisawa M,
et al: Novel mutations of the endothelin B receptor gene in
patients with Hirschsprung's disease and their characterization. J
Biol Chem. 273:11378–11383. 1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Puffenberger EG, Hosoda K, Washington SS,
Nakao K, deWit D, Yanagisawa M and Chakravarti A: A missense
mutation of the endothelin-B receptor gene in multigenic
Hirschsprung's disease. Cell. 79:1257–1266. 1994. View Article : Google Scholar : PubMed/NCBI
|
35
|
Verheij JB, Kunze J, Osinga J, van Essen
AJ and Hofstra RM: ABCD syndrome is caused by a homozygous mutation
in the EDNRB gene. Am J Med Genet. 108:223–225. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Abelson JF, Kwan KY, O'Roak BJ, Baek DY,
Stillman AA, Morgan TM, Mathews CA, Pauls DL, Rasin MR, Gunel M, et
al: Sequence variants in SLITRK1 are associated with Tourette's
syndrome. Science. 310:317–320. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
de Pontual L, Yao E, Callier P, Faivre L,
Drouin V, Cariou S, Van Haeringen A, Geneviève D, Goldenberg A,
Oufadem M, et al: Germline deletion of the miR-17-92 cluster causes
skeletal and growth defects in humans. Nat Genet. 43:1026–1030.
2011. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Albano LM, Oliveira LA, Bertola DR, Mazzu
JF and Kim CA: Omodysplasia: The first reported Brazilian case.
Clinics (Sao Paulo). 62:531–534. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Elcioglu NH, Gustavson KH, Wilkie AO,
Yüksel-Apak M and Spranger JW: Recessive omodysplasia: Five new
cases and review of the literature. Pediat Radiol. 34:75–82. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Lukong CS, Mshelbwala PM, Anumah MA, Ameh
EA and Nmadu PT: Anorectal malformation coexisting with
Hirschsprung's disease: A report of two patients. Afr J Paediatr
Surg. 9:166–168. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Metts JC III, Kotkin L, Kasper S, Shyr Y,
Adams MC and Brock JW III: Genital malformations and coexistent
urinary tract or spinal anomalies in patients with imperforate
anus. J Urol. 158:1298–1300. 1997. View Article : Google Scholar : PubMed/NCBI
|
42
|
Raboei EH: Patients with anorectal
malformation and Hirschsprung's disease. Eur J Pediatr Surg.
19:325–327. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jobanputra V, Wilson A, Shirazi M,
Feenstra H, Levy B, Anyane-Yeboa K and Warburton D: Partial
uniparental disomy with mosaic deletion 13q in an infant with
multiple congenital anomalies. Am J Med Genet A. 161A:2393–2395.
2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hanson KP, Jung JP, Tran QA, Hsu SP, lida
R, Ajeti V, Campagnola PJ, Eliceiri KW, Squirrell JM, Lyons GE and
Ogle BM: Spatial and temporal analysis of extracellular matrix
proteins in the developing murine heart: A blueprint for
regeneration. Tissue Eng Part A. 19:1132–1143. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Schenke-Leyland K, Nsair A, Van Handel B,
Angelis E, Gluck JM, Votteler M, Goldhaber JI, Mikkola HK, Kahn M
and MacLellan WR: Recapitulation of the embryonic cardiovascular
progenitor cell niche. Biomaterials. 32:2748–2756. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Adams RH, Wilkinson GA, Weiss C, Diella F,
Gale NW, Deutsch U, Risau W and Klein R: Roles of ephrinB ligands
and EphB receptors in cardiovascular development: Demarcation of
arterial/venous domains, vascular morphogenesis, and sprouting
angiogenesis. Genes Dev. 13:295–306. 1999. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang HU, Chen ZF and Anderson DJ:
Molecular distinction and angiogenic interaction between embryonic
arteries and veins revealed by ephrin-B2 and its receptor Eph-B4.
Cell. 93:741–753. 1998. View Article : Google Scholar : PubMed/NCBI
|
48
|
Cowan CA, Yokoyama N, Saxena A, Chumley
MJ, Silvany RE, Baker LA, Srivastava D and Henkemeyer M: Ephrin-B2
reverse signaling is required for axon pathfinding and cardiac
valve formation but not early vascular development. Dev Biol.
271:263–271. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Batlle E, Henderson JT, Beghtel H, van den
Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering
M, Pawson T and Clevers H: Beta-catenin and TCF mediate cell
positioning in the intestinal epithelium by controlling the
expression of EphB/ephrinB. Cell. 111:251–263. 2002. View Article : Google Scholar : PubMed/NCBI
|
50
|
Batlle E, Bacani J, Begthel H, Jonkheer S,
Gregorieff A, van de Born M, Malats N, Sancho E, Boon E, Pawson T,
et al: EphB receptor activity suppresses colorectal cancer
progression. Nature. 435:1126–1130. 2005. View Article : Google Scholar : PubMed/NCBI
|