1
|
Campochiaro PA: Ocular neovascularization.
J Mol Med (Berl). 91:311–321. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lee CS, Lee AY, Sim DA, Keane PA, Mehta H,
Zarranz-Ventura J, Fruttiger M, Egan CA and Tufail A: Reevaluating
the definition of intraretinal microvascular abnormalities and
neovascularization elsewhere in diabetic retinopathy using optical
coherence tomography and fluorescein angiography. Am J Ophthalmol.
159:101–110.e1. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ida H, Tobe T, Nambu H, Matsumura M, Uyama
M and Campochiaro PA: RPE cells modulate subretinal
neovascularization, but do not cause regression in mice with
sustained expression of VEGF. Invest Ophthalmol Vis Sci.
44:5430–5437. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Teke MY, Balikoglu-Yilmaz M, Yuksekkaya P,
Citirik M, Elgin U, Kose T and Ozturk F: Surgical outcomes and
incidence of retinal redetachment in cases with complicated retinal
detachment after silicone oil removal: Univariate and multiple risk
factors analysis. Retina. 34:1926–1938. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Praidou A, Androudi S, Brazitikos P,
Karakiulakis G, Papakonstantinou E and Dimitrakos S: Angiogenic
growth factors and their inhibitors in diabetic retinopathy. Curr
Diabetes Rev. 6:304–312. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sullivan GW, Sarembock IJ and Linden J:
The role of inflammation in vascular diseases. J Leukoc Biol.
67:591–602. 2000.PubMed/NCBI
|
7
|
Peitzman AB, Billiar TR, Harbrecht BG,
Kelly E, Udekwu AO and Simmons RL: Hemorrhagic shock. Curr Probl
Surg. 32:925–1002. 1995. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lassila R: Inflammation in atheroma:
Implications for plaque rupture and platelet-collagen interaction.
Eur Heart J. 14:(Suppl K). 94–97. 1993.PubMed/NCBI
|
9
|
Nielsen JD: The effect of antithrombin on
the systemic inflammatory response in disseminated intravascular
coagulation. Blood Coagul Fibrinolysis. 9:(Suppl 3). 11–15.
1998.PubMed/NCBI
|
10
|
Hansson GK: Immunological control
mechanisms in plaque formation. Basic Res Cardiol. 89:(Suppl 1).
41–46. 1994.PubMed/NCBI
|
11
|
Wilensky RL, March KL, Gradus-Pizlo I,
Sandusky G, Fineberg N and Hathaway DR: Vascular injury, repair,
and restenosis after percutaneous transluminal angioplasty in the
atherosclerotic rabbit. Circulation. 92:2995–3005. 1995. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mach F, Schonbeck U, Fabunmi RP, Murphy C,
Atkinson E, Bonnefoy JY, Graber P and Libby P: T lymphocytes induce
endothelial cell matrix metalloproteinase expression by a
CD40L-dependent mechanism: Implications for tubule formation. Am J
Pathol. 154:229–238. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Moseley TA, Haudenschild DR, Rose L and
Reddi AH: Interleukin-17 family and IL-17 receptors. Cytokine
Growth Factor Rev. 14:155–174. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yao Z, Fanslow WC, Seldin MF, Rousseau AM,
Painter SL, Comeau MR, Cohen JI and Spriggs MK: Herpesvirus Saimiri
encodes a new cytokine, IL-17, which binds to a novel cytokine
receptor. Immunity. 3:811–821. 1995. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fossiez F, Djossou O, Chomarat P,
Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E,
Saeland S, et al: T cell interleukin-17 induces stromal cells to
produce proinflammatory and hematopoietic cytokines. J Exp Med.
183:2593–2603. 1996. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yao Z, Painter SL, Fanslow WC, Ulrich D,
Macduff BM, Spriggs MK and Armitage RJ: Human IL-17: A novel
cytokine derived from T cells. J Immunol. 155:5483–5486.
1995.PubMed/NCBI
|
17
|
Aarvak T, Chabaud M, Miossec P and Natvig
JB: IL-17 is produced by some proinflammatory Th1/Th0 cells but not
by Th2 cells. J Immunol. 162:1246–1251. 1999.PubMed/NCBI
|
18
|
Jovanovic DV, Di Battista JA,
Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F and
Pelletier JP: IL-17 stimulates the production and expression of
proinflammatory cytokines, IL-beta and TNF-alpha, by human
macrophages. J Immunol. 160:3513–3521. 1998.PubMed/NCBI
|
19
|
Numasaki M, Fukushi J, Ono M, Narula SK,
Zavodny PJ, Kudo T, Robbins PD, Tahara H and Lotze MT:
Interleukin-17 promotes angiogenesis and tumor growth. Blood.
101:2620–2627. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chang SH, Park H and Dong C: Act1 adaptor
protein is an immediate and essential signaling component of
interleukin-17 receptor. J Biol Chem. 281:35603–35607. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Suryawanshi A, Veiga-Parga T, Reddy PB,
Rajasagi NK and Rouse BT: IL-17A differentially regulates corneal
vascular endothelial growth factor (VEGF)-A and soluble VEGF
receptor 1 expression and promotes corneal angiogenesis after
herpes simplex virus infection. J Immunol. 188:3434–3446. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen Z, Liu G, Xiao Y and Lu P:
Adrenomedullin22-52 suppresses high-glucose-induced migration,
proliferation, and tube formation of human retinal endothelial
cells. Mol Vis. 20:259–269. 2014.PubMed/NCBI
|
23
|
Liu G, Zhang W, Xiao Y and Lu P: Critical
role of IP-10 on reducing experimental corneal neovascularization.
Curr Eye Res. 40:891–901. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chao TI, Xiang S, Chen CS, Chin WC, Nelson
AJ, Wang C and Lu J: Carbon nanotubes promote neuron
differentiation from human embryonic stem cells. Biochem Biophys
Res Commun. 384:426–430. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lu P, Li L, Liu G, van Rooijen N, Mukaida
N and Zhang X: Opposite roles of CCR2 and CX3CR1 macrophages in
alkali-induced corneal neovascularization. Cornea. 28:562–569.
2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu G, Lu P, Li L, Jin H, He X, Mukaida N
and Zhang X: Critical role of SDF-1α-induced progenitor cell
recruitment and macrophage VEGF production in the experimental
corneal neovascularization. Mol Vis. 17:2129–2138. 2011.PubMed/NCBI
|
27
|
Gyenge M, Amagase K, Kunimi S, Matsuoka R
and Takeuchi K: Roles of pro-angiogenic and anti-angiogenic factors
as well as matrix metalloproteinases in healing of NSAID-induced
small intestinal ulcers in rats. Life Sci. 93:441–447. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhuang Z Xiao-qin, Hu H, Tian SY, Lu ZJ,
Zhang TZ and Bai YL: Down-regulation of microRNA-155 attenuates
retinal neovascularization via the PI3K/Akt pathway. Mol Vis.
21:1173–1184. 2015.PubMed/NCBI
|
29
|
Kryczek I, Wei S, Szeliga W, Vatan L and
Zou W: Endogenous IL-17 contributes to reduced tumor growth and
metastasis. Blood. 114:357–359. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nakashio A, Fujita N and Tsuruo T:
Topotecan inhibits VEGF- and bFGF-induced vascular endothelial cell
migration via downregulation of the PI3K-Akt signaling pathway. Int
J Cancer. 98:36–41. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ryu S, Lee JH and Kim SI: IL-17 increased
the production of vascular endothelial growth factor in rheumatoid
arthritis synoviocytes. Clin Rheumatol. 25:16–20. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Honorati MC, Neri S, Cattini L and
Facchini A: Interleukin-17, a regulator of angiogenic factor
release by synovial fibroblasts. Osteoarthritis Cartilage.
14:345–352. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Uno K, Hayashi H, Kuroki M, Uchida H,
Yamauchi Y, Kuroki M and Oshima K: Thrombospondin-1 accelerates
wound healing of corneal epithelia. Biochem Biophys Res Commun.
315:928–934. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Martínez A: A new family of angiogenic
factors. Cancer Lett. 236:157–163. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sakaguchi I, Ikeda N, Nakayama M, Kato Y,
Yano I and Kaneda K: Trehalose 6,6′-dimycolate (Cord factor)
enhances neovascularization through vascular endothelial growth
factor production by neutrophils and macrophages. Infect Immun.
68:2043–2052. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Edelman JL, Castro MR and Wen Y:
Correlation of VEGF expression by leukocytes with the growth and
regression of blood vessels in the rat cornea. Invest Ophthalmol
Vis Sci. 40:1112–1123. 1999.PubMed/NCBI
|
37
|
Lai CM, Spilsbury K, Brankov M, Zaknich T
and Rakoczy PE: Inhibition of corneal neovascularization by
recombinant adenovirus mediated antisense VEGF RNA. Exp Eye Res.
75:625–634. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Griffioen AW and Molema G: Angiogenesis:
Potentials for pharmacologic intervention in the treatment of
cancer, cardiovascular diseases, and chronic inflammation.
Pharmacol Rev. 52:237–268. 2000.PubMed/NCBI
|
39
|
Krstić J, Jauković A, Mojsilović S,
Ðorđević IO, Trivanović D, Ilić V, Santibañez JF and Bugarski D: In
vitro effects of IL-17 on angiogenic properties of endothelial
cells in relation to oxygen levels. Cell Biol Int. 37:1162–1170.
2013.PubMed/NCBI
|
40
|
Wu LW, Mayo LD, Dunbar JD, Kessler KM,
Baerwald MR, Jaffe EA, Wang D, Warren RS and Donner DB: Utilization
of distinct signaling pathways by receptors for vascular
endothelial cell growth factor and other mitogens in the induction
of endothelial cell proliferation. J Biol Chem. 275:5096–5103.
2000. View Article : Google Scholar : PubMed/NCBI
|
41
|
Dimmeler S and Zeiher AM: Akt takes center
stage in angiogenesis signaling. Circ Res. 86:4–5. 2000. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tsubaki M, Yamazoe Y, Yanae M, Satou T,
Itoh T, Kaneko J, Kidera Y, Moriyama K and Nishida S: Blockade of
the Ras/MEK/ERK and Ras/PI3K/Akt pathways by statins reduces the
expression of bFGF, HGF and TGF-β as angiogenic factors in mouse
osteosarcoma. Cytokine. 54:100–107. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bellacosa A, Testa JR, Staal SP and
Tsichlis PN: A retroviral oncogene, akt, encoding a
serine-threonine kinase containing an SH2-like region. Science.
254:274–277. 1991. View Article : Google Scholar : PubMed/NCBI
|