1
|
Clemons TE, Milton RC, Klein R, Seddon JM
and Ferris FL III: Age-Related Eye Disease Study Research Group:
Risk factors for the incidence of advanced age-related macular
degeneration in the age-related eye disease study (AREDS) AREDS
report no. 19. Ophthalmology. 112:533–539. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Biarnés M, Monés J, Alonso J and Arias L:
Update on geographic atrophy in age-related macular degeneration.
Optom Vis Sci. 88:881–889. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Klein R, Klein BE, Knudtson MD, Meuer SM,
Swift M and Gangnon RE: Fifteen-year cumulative incidence of
age-related macular degeneration: The beaver dam eye study.
Ophthalmology. 114:253–262. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Klein R, Klein BE, Knudtson MD, Wong TY,
Cotch MF, Liu K, Burke G, Saad MF and Jacobs DR Jr: Prevalence of
age-related macular degeneration in 4 racial/ethnic groups in the
multi-ethnic study of atherosclerosis. Ophthalmology. 113:373–380.
2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Thornton J, Edwards R, Mitchell P,
Harrison RA, Buchan I and Kelly SP: Smoking and age-related macular
degeneration: A review of association. Eye (Lond). 19:935–944.
2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yates JR, Sepp T, Matharu BK, Khan JC,
Thurlby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF,
et al: Complement C3 variant and the risk of age-related macular
degeneration. N Engl J Med. 357:553–561. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ambati J, Atkinson JP and Gelfand BD:
Immunology of age-related macular degeneration. Nat Rev Immunol.
13:438–451. 2013. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Tarallo V, Hirano Y, Gelfand BD, Dridi S,
Kerur N, Kim Y, Cho WG, Kaneko H, Fowler BJ, Bogdanovich S, et al:
DICER1 loss and Alu RNA induce age-related macular
degeneration via the NLRP3 inflammasome and MyD88. Cell.
149:847–859. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kraljević Pavelić S, Klobučar M, Sedić M,
Micek V, Gehrig P, Grossman J, Pavelić K and Vojniković B:
UV-induced retinal proteome changes in the rat model of age-related
macular degeneration. Biochim Biophys Acta. 1852:1833–1845. 2015.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kerr JB and McElroy CT: Evidence for large
upward trends of ultraviolet-B radiation linked to ozone depletion.
Science. 262:1032–1034. 1993. View Article : Google Scholar : PubMed/NCBI
|
11
|
Forest DL, Johnson LV and Clegg DO:
Cellular models and therapies for age-related macular degeneration.
Dis Model Mech. 8:421–427. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Strauss O: The retinal pigment epithelium
in visual function. Physiol Rev. 85:845–881. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cruickshanks KJ, Klein R, Klein BE and
Nondahl DM: Sunlight and the 5-year incidence of early age-related
maculopathy: The beaver dam eye study. Arch Ophthalmol.
119:246–250. 2001.PubMed/NCBI
|
14
|
Artavanis-Tsakonas S, Rand MD and Lake RJ:
Notch signaling: Cell fate control and signal integration in
development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kopan R and Ilagan MX: The canonical Notch
signaling pathway: Unfolding the activation mechanism. Cell.
137:216–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Schouwey K, Aydin IT, Radtke F and
Beermann F: RBP- Jk-dependent Notch signaling enhances retinal
pigment epithelial cell proliferation in transgenic mice. Oncogene.
30:313–322. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bolós V, Grego-Bessa J and de la Pompa JL:
Notch signaling in development and cancer. Endocr Rev. 28:339–363.
2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen J, Kesari S, Rooney C, Strack PR,
Chen J, Shen H, Wu L and Griffin JD: Inhibition of notch signaling
blocks growth of glioblastoma cell lines and tumor neurospheres.
Genes Cancer. 1:822–835. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lin S, Tian L, Shen H, Gu Y, Li JL, Chen
Z, Sun X, You MJ and Wu L: DDX5 is a positive regulator of
oncogenic NOTCH1 signaling in T cell acute lymphoblastic leukemia.
Oncogene. 32:4845–4853. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen Z, Jin G, Lin S, Lin X, Gu Y, Zhu Y,
Hu C, Zhang Q, Wu L and Shen H: DNA methyltransferase inhibitor
CDA-II inhibits myogenic differentiation. Biochem Biophys Res
Commun. 422:522–526. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Vatsyayan R, Lelsani PC, Chaudhary P,
Kumar S, Awasthi S and Awasthi YC: The expression and function of
vascular endothelial growth factor in retinal pigment epithelial
(RPE) cells is regulated by 4-hydroxynonenal (HNE) and glutathione
S-transferaseA4-4. Biochem Biophys Res Commun. 417:346–351. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Mandinova A, Lefort K, di Vignano Tommasi
A, Stonely W, Ostano P, Chiorino G, Iwaki H, Nakanishi J and Dotto
GP: The FoxO3a gene is a key negative target of canonical Notch
signalling in the keratinocyte UVB response. EMBO J. 27:1243–1254.
2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fukunaga-Kalabis M, Hristova DM, Wang JX,
Li L, Heppt MV, Wei Z, Gyurdieva A, Webster MR, Oka M, Weeraratna
AT and Herlyn M: UV-induced Wnt7a in the human skin
microenvironment specifies the fate of neural crest-like cells via
suppression of Notch. J Invest Dermatol. 135:1521–1532. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Bao ZZ and Cepko CL: The expression and
function of Notch pathway genes in the developing rat eye. J
Neurosci. 17:1425–1434. 1997.PubMed/NCBI
|
25
|
Zhou Y, Tanzie C, Yan Z, Chen S, Duncan M,
Gaudenz K, Li H, Seidel C, Lewis B, Moran A, et al: Notch2
regulates BMP signaling and epithelial morphogenesis in the ciliary
body of the mouse eye. Proc Natl Acad Sci USA. 110:8966–8971. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
McCright B, Gao X, Shen L, Lozier J, Lan
Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R and Gridley T:
Defects in development of the kidney, heart and eye vasculature in
mice homozygous for a hypomorphic Notch2 mutation. Development.
128:491–502. 2001.PubMed/NCBI
|
27
|
Liu W, Jin G, Long C, Zhou X, Tang Y,
Huang S, Kuang X, Wu L, Zhang Q and Shen H: Blockage of Notch
signaling inhibits the migration and proliferation of retinal
pigment epithelial cells. ScientificWorldJournal. 2013:1787082013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Park GB, Kim D, Kim YS, Kim JW, Sun H, Roh
KH, Yang JW and Hur DY: Regulation of ADAM10 and ADAM17 by
sorafenib inhibits epithelial-to-mesenchymal transition in
Epstein-Barr virus-infected retinal pigment epithelial cells.
Invest Ophthalmol Vis Sci. 56:5162–5173. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Balaiya S, Murthy RK, Brar VS and Chalam
KV: Evaluation of ultraviolet light toxicity on cultured retinal
pigment epithelial and retinal ganglion cells. Clin Ophthalmol.
4:33–39. 2010.PubMed/NCBI
|
30
|
Roduit R and Schorderet DF: MAP kinase
pathways in UV-induced apoptosis of retinal pigment epithelium
ARPE19 cells. Apoptosis. 13:343–353. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Roehlecke C, Schaller A, Knels L and Funk
RH: The influence of sublethal blue light exposure on human RPE
cells. Mol Vis. 15:1929–1938. 2009.PubMed/NCBI
|
32
|
Kulms D and Schwarz T: Independent
contribution of three different pathways to ultraviolet-B-induced
apoptosis. Biochem Pharmacol. 64:837–841. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Valerie K, Yacoub A, Hagan MP, Curiel DT,
Fisher PB, Grant S and Dent P: Radiation-induced cell signaling:
Inside-out and outside-in. Mol Cancer Ther. 6:789–801. 2007.
View Article : Google Scholar : PubMed/NCBI
|