1
|
Yan J, Fan L, Zhao Y, You L, Wang L, Zhao
H, Li Y and Chen ZJ: DYZ1 copy number variation, Y chromosome
polymorphism and early recurrent spontaneous abortion/early embryo
growth arrest. Eur J Obstet Gynecol Reprod Biol. 159:371–374. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Luan L, Zhu X and Ma Y: Study on
expression of TGF-β1, MMP-9 and TIMP-1 in the chorionic villi of
early embryo growth arrest. Pro Obstetrics Gynecol. 2012.
|
3
|
Xiao FZ and Hu ML: The prevent and reason
analysis of the patients of embryo damage. China Practical
Medicine. 8:27–29. 2013.(In Chinese).
|
4
|
Wang Y, Han YF, Wang ZY and Wen-Yuan LI:
Clinical study on intervention measures of re-pregnancy in people
with embryo damage history. Guide of China Medicine. 19:56–57.
2014.(In Chinese).
|
5
|
Bauer MK, Harding JE, Bassett NS, Breier
BH, Oliver MH, Gallaher BH, Evans PC, Woodall SM and Gluckman PD:
Fetal growth and placental function. Mol Cell Endocrinol.
140:115–120. 1998. View Article : Google Scholar : PubMed/NCBI
|
6
|
Beck S and Rakyan VK: The methylome:
Approaches for global DNA methylation profiling. Trends Genet.
24:231–237. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Oda M, Yamagiwa A, Yamamoto S, Nakayama T,
Tsumura A, Sasaki H, Nakao K, Li E and Okano M: DNA methylation
regulates long-range gene silencing of an X-linked homeobox gene
cluster in a lineage-specific manner. Genes Dev. 20:3382–3394.
2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
MacDonald WA and Mann MR: Epigenetic
regulation of genomic imprinting from germ line to preimplantation.
Mol Reprod Dev. 81:126–140. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Watanabe D, Suetake I, Tada T and Tajima
S: Stage- and cell-specific expression of DNMT3a and DNMT3b during
embryogenesis. Mech Dev. 118:187–190. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Koukoura O, Sifakis S and Spandidos DA:
DNA methylation in the human placenta and fetal growth (Review).
Mol Med Rep. 5:883–889. 2012.PubMed/NCBI
|
11
|
O'Doherty AM, Magee DA, O'Shea LC, Forde
N, Beltman ME, Mamo S and Fair T: DNA methylation dynamics at
imprinted genes during bovine pre-implantation embryo development.
BMC Dev Biol. 15:132015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Uysal F, Akkoyunlu G and Ozturk S: Dynamic
expression of DNA methyltransferases (DNMTs) in oocytes and early
embryos. Biochimie. 116:103–113. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen T and Li E: Structure and function of
eukaryotic DNA methyltransferases. Curr Top Dev Biol. 60:55–89.
2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yoder MC, Hiatt K, Dutt P, Mukherjee P,
Bodine DM and Orlic D: Characterization of definitive
lymphohematopoietic stem cells in the day 9 murine yolk sac.
Immunity. 7:335–344. 1997. View Article : Google Scholar : PubMed/NCBI
|
15
|
Katari S, Turan N, Bibikova M, Erinle O,
Chalian R, Foster M, Gaughan JP, Coutifaris C and Sapienza C: DNA
methylation and gene expression differences in children conceived
in vitro or in vivo. Hum Mol Genet. 18:3769–3778. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang K, Wu Z, Liu Z, Hu G, Yu J, Chang
KH, Kim KP, Le T, Faull KF, Rao N, et al: Selective demethylation
and altered gene expression are associated with ICF syndrome in
human-induced pluripotent stem cells and mesenchymal stem cells.
Hum Mol Genet. 23:6448–6457. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ehrlich M: The ICF syndrome, a DNA
methyltransferase 3B deficiency and immunodeficiency disease. Clin
Immunol. 109:17–28. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Arand J, Wossidlo M, Lepikhov K, Peat JR,
Reik W and Walter J: Selective impairment of methylation
maintenance is the major cause of DNA methylation reprogramming in
the early embryo. Epigenetics Chromatin. 8:12015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hirasawa R and Sasaki H: Dynamic
transition of Dnmt3b expression in mouse pre- and early
post-implantation embryos. Gene Expr Patterns. 9:27–30. 2009.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hirasawa R, Chiba H, Kaneda M, Tajima S,
Li E, Jaenisch R and Sasaki H: Maternal and zygotic Dnmt1 are
necessary and sufficient for the maintenance of DNA methylation
imprints during preimplantation development. Genes Dev.
22:1607–1616. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Spradley FT: Metabolic abnormalities and
obesity's impact on the risk for developing preeclampsia. Am J
Physiol Regul Integr Comp Physiol. 312:R5–R12. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hou SX and Dept U: Application of
ultrasound in the diagnosis of intrauterine embryo growth arrest.
World Latest Medicine Information. 15:29–30. 2015.(In Chinese).
|
24
|
Sharma S: Natural killer cells and
regulatory T cells in early pregnancy loss. Int J Dev Biol.
58:219–229. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zobeiri F, Sadrkhanlou RA, Salami S,
Mardani K and Ahmadi A: The effect of ciprofloxacin on sperm DNA
damage, fertility potential and early embryonic development in NMRI
mice. Vet Res Forum. 3:131–135. 2012.PubMed/NCBI
|
26
|
Fuke C, Shimabukuro M, Petronis A,
Sugimoto J, Oda T, Miura K, Miyazaki T, Ogura C, Okazaki Y and
Jinno Y: Age related changes in 5-methylcytosine content in human
peripheral leukocytes and placentas: An HPLC-based study. Ann Hum
Genet. 68:196–204. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Maccani MA and Marsit CJ: Epigenetics in
the placenta. Am J Reprod Immunol. 62:78–89. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hata K, Kusumi M, Yokomine T, Li E and
Sasaki H: Meiotic and epigenetic aberrations in Dnmt3L-deficient
male germ cells. Mol Reprod Dev. 73:116–122. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yin LJ, Zhang Y, Lv PP, He WH, Wu YT, Liu
AX, Ding GL, Dong MY, Qu F, Xu CM, et al: Insufficient maintenance
DNA methylation is associated with abnormal embryonic development.
BMC Med. 10:262012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lucifero D, La Salle S, Bourc'his D,
Martel J, Bestor TH and Trasler JM: Coordinate regulation of DNA
methyltransferase expression during oogenesis. BMC Dev Biol.
7:362007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Waterland RA and Jirtle RL: Early
nutrition, epigenetic changes at transposons and imprinted genes,
and enhanced susceptibility to adult chronic diseases. Nutrition.
20:63–68. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Robins JC, Marsit CJ, Padbury JF and
Sharma SS: Endocrine disruptors, environmental oxygen, epigenetics
and pregnancy. Front Biosci (Elite Ed). 3:690–700. 2011.PubMed/NCBI
|
33
|
Sood R, Zehnder JL, Druzin ML and Brown
PO: Gene expression patterns in human placenta. Proc Natl Acad Sci
USA. 103:5478–5483. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Filiberto AC, Maccani MA, Koestler D,
Wilhelm-Benartzi C, Avissar-Whiting M, Banister CE, Gagne LA and
Marsit CJ: Birthweight is associated with DNA promoter methylation
of the glucocorticoid receptor in human placenta. Epigenetics.
6:566–572. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Nelissen EC, van Montfoort AP, Dumoulin JC
and Evers JL: Epigenetics and the placenta. Hum Reprod Update.
17:397–417. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vlahović M, Bulić-Jakus F, Jurić-Lekić G,
Fucić A, Marić S and Serman D: Changes in the placenta and in the
rat embryo caused by the demethylating agent 5-azacytidine. Int J
Dev Biol. 43:843–846. 1999.PubMed/NCBI
|
37
|
Grazul-Bilska AT, Johnson ML, Borowicz PP,
Minten M, Bilski JJ, Wroblewski R, Velimirovich M, Coupe LR, Redmer
DA and Reynolds LP: Placental development during early pregnancy in
sheep: Cell proliferation, global methylation, and angiogenesis in
the fetal placenta. Reproduction. 141:529–540. 2011. View Article : Google Scholar : PubMed/NCBI
|