1
|
Tang L, Ebara S, Kawasaki S, Wakabayashi
S, Nikaido T and Takaoka K: FK506 enhanced osteoblastic
differentiation in mesenchymal cells. Cell Biol Int. 26:75–84.
2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Byun YK, Kim KH, Kim SH, Kim YS, Koo KT,
Kim TI, Seol YJ, Ku Y, Rhyu IC and Lee YM: Effects of
immunosuppressants, FK506 and cyclosporin A, on the osteogenic
differentiation of rat mesenchymal stem cells. J Periodontal
Implant Sci. 42:73–80. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Iejima D, Lee MH, Kojima H, Yoshikawa T,
Wang PC and Uemura T: Cbfa1 expression is enhanced by the
immunosuppressant FK506 in the osteoblastic cell line: UMR106.
Mater Sci Eng: C. 24:845–850. 2004. View Article : Google Scholar
|
4
|
Yoshikawa T, Nakajima H, Yamada E, Akahane
M, Dohi Y, Ohgushi H, Tamai S and Ichijima K: In vivo osteogenic
capability of cultured allogeneic bone in porous hydroxyapatite:
Immunosuppressive and osteogenic potential of FK506 in vivo. J Bone
Miner Res. 15:1147–1157. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fukunaga J, Yamaai T, Yamachika E,
Ishiwari Y, Tsujigiwa H, Sawaki K, Lee YJ, Ueno T, Kirino S,
Mizukawa N, et al: Expression of osteoclast differentiation factor
and osteoclastogenesis inhibitory factor in rat osteoporosis
induced by immunosuppressant FK506. Bone. 34:425–431. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Sun L, Blair HC, Peng Y, Zaidi N, Adebanjo
OA, Wu XB, Wu XY, Iqbal J, Epstein S, Abe E, et al: Calcineurin
regulates bone formation by the osteoblast. Proc Natl Acad Sci USA.
102:17130–17135. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu JF, Yang Gh, Pan XH, Zhang SJ, Zhao C,
Qiu BS, Gu HF, Hong JF, Cao L, Chen Y, et al: Altered microRNA
expression profile in exosomes during osteogenic differentiation of
human bone marrow-derived mesenchymal stem cells. PLoS One.
9:e1146272014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Martin EC, Qureshi AT, Dasa V, Freitas MA,
Gimble JM and Davis TA: MicroRNA regulation of stem cell
differentiation and diseases of the bone and adipose tissue:
Perspectives on miRNA biogenesis and cellular transcriptome.
Biochimie. 124:98–111. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Fang S, Deng Y, Gu P and Fan X: MicroRNAs
regulate bone development and regeneration. Int J Mol Sci.
16:8227–8253. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang M, Pan Y and Zhou Y: miR-96 promotes
osteogenic differentiation by suppressing HBEGF-EGFR signaling in
osteoblastic cells. FEBS Lett. 588:4761–4768. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hu N, Feng C, Jiang Y, Miao Q and Liu H:
Regulative effect of Mir-205 on osteogenic differentiation of bone
mesenchymal stem cells (BMSCs): Possible role of SATB2/Runx2 and
ERK/MAPK pathway. Int J Mol Sci. 16:10491–10506. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dai W, Dong J, Fang T and Uemura T:
Stimulation of osteogenic activity in mesenchymal stem cells by
FK506. J Biomed Mater Res A. 86:235–243. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Benjamini Y and Hochberg Y: Controlling
the False Discovery Rate: A Practical and powerful Approach to
multiple testing. J R Stat Soc B. 57:289–300. 1995.
|
15
|
Dumont FJ: FK506, an immunosuppressant
targeting calcineurin function. Curr Med Chem. 7:731–748. 2000.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kang KY, Ju JH, Song YW, Yoo DH, Kim HY
and Park SH: Tacrolimus treatment increases bone formation in
patients with rheumatoid arthritis. Rheumatol Int. 33:2159–2163.
2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yago T, Nanke Y, Kawamoto M, Yamanaka H
and Kotake S: Tacrolimus potently inhibits human osteoclastogenesis
induced by IL-17 from human monocytes alone and suppresses human
Th17 differentiation. Cytokine. 59:252–257. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kugimiya F, Yano F, Ohba S, Igawa K,
Nakamura K, Kawaguchi H and Chung UI: Mechanism of osteogenic
induction by FK506 via BMP/Smad pathways. Biochem Biophys Res
Commun. 338:872–879. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tateishi K, Higuchi C, Ando W, Nakata K,
Hashimoto J, Hart DA, Yoshikawa H and Nakamura N: The
immunosuppressant FK506 promotes development of the chondrogenic
phenotype in human synovial stromal cells via modulation of the
Smad signaling pathway. Osteoarthritis Cartilage. 15:709–718. 2007.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Spolidorio LC, Nassar PO, Nassar CA,
Spolidorio DM and Muscará MN: Conversion of immunosuppressive
monotherapy from cyclosporin a to tacrolimus reverses bone loss in
rats. Calcif Tissue Int. 81:114–123. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Luo L, Shi Y, Bai Y, Zou Y, Cai B, Tao Y,
Lin T and Wang L: Impact of tacrolimus on bone metabolism after
kidney transplantation. Int Immunopharmacol. 13:69–72. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kaihara S, Bessho K, Okubo Y, Sonobe J,
Kusumoto K, Ogawa Y and Iizuka T: Effect of FK506 on osteoinduction
by recombinant human bone morphogenetic protein-2. Life Sci.
72:247–256. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hassan MQ, Gordon JAR, Beloti MM, Croce
CM, van Wijnen AJ, Stein JL, Stein GS and Lian JB: A network
connecting Runx2, SATB2 and the miR-23a- 27a-24-2 cluster regulates
the osteoblast differentiation program. Proc Natl Acad Sci USA.
107:19879–19884. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Guo D, Li Q, Lv Q, Wei Q, Cao S and Gu J:
MiR-27a targets sFRP1 in hFOB cells to regulate proliferation,
apoptosis and differentiation. PLoS One. 9:e913542014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang Zj Zhang H, Kang Y, Sheng PY, Ma YC,
Yang ZB, Zhang ZQ, Fu M, He AS and Liao WM: miRNA expression
profile during osteogenic differentiation of human adipose-derived
stem cells. J Cell Biochem. 113:888–898. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang WB, Zhong WJ and Wang L: A
signal-amplification circuit between miR-218 and Wnt/β-catenin
signal promotes human adipose tissue-derived stem cells osteogenic
differentiation. Bone. 58:59–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Seger R and Krebs EG: The MAPK signaling
cascade. FASEB J. 9:726–735. 1995.PubMed/NCBI
|
28
|
Wang P, Xiong Y, Ma C, Shi T and Ma D:
Molecular cloning and characterization of novel human JNK2 (MAPK9)
transcript variants that show different stimulation activities on
AP-1. BMB Rep. 43:738–743. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Matsuguchi T, Chiba N, Bandow K, Kakimoto
K, Masuda A and Ohnishi T: JNK activity is essential for Atf4
expression and late-stage osteoblast differentiation. J Bone Miner
Res. 24:398–410. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhao YF, Xu J, Wang WJ, Wang J, He JW, Li
L, Dong Q, Xiao Y, Duan XL, Yang X, et al: Activation of JNKs is
essential for BMP9-induced osteogenic differentiation of
mesenchymal stem cells. BMB Rep. 46:422–427. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li Z, Hassan MQ, Jafferji M, Aqeilan RI,
Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS and Lian JB:
Biological functions of miR-29b contribute to positive regulation
of osteoblast differentiation. J Biol Chem. 284:15676–15684. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Caunt CJ, Rivers CA, Conway-Campbell BL,
Norman MR and McArdle CA: Epidermal growth factor receptor and
protein kinase C signaling to ERK2: Spatiotemporal regulation of
ERK2 by dual specificity phosphatases. J Biol Chem. 283:6241–6252.
2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jeffrey KL, Camps M, Rommel C and Mackay
CR: Targeting dual-specificity phosphatases: Manipulating MAP
kinase signalling and immune responses. Nat Rev Drug Discov.
6:391–403. 2007. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Chen G, Deng C and Li YP: TGF-β and BMP
signaling in osteoblast differentiation and bone formation. Int J
Biol Sci. 8:272–288. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dai J, Li Y, Zhou H, Chen J, Chen M and
Xiao Z: Genistein promotion of osteogenic differentiation through
BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci. 9:1089–1098. 2013.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Ying SX, Hussain ZJ and Zhang YE: Smurf1
facilitates myogenic differentiation and antagonizes the bone
morphogenetic protein-2-induced osteoblast conversion by targeting
Smad5 for degradation. J Biol Chem. 278:39029–39036. 2003.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Retting KN, Song B, Yoon BS and Lyons KM:
BMP canonical Smad signaling through Smad1 and Smad5 is required
for endochondral bone formation. Development. 136:1093–1104. 2009.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Yano M, Inoue Y, Tobimatsu T, Hendy G,
Canaff L, Sugimoto T, Seino S and Kaji H: Smad7 inhibits
differentiation and mineralization of mouse osteoblastic cells.
Endocr J. 59:653–662. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang JF, Fu WM, He ML, Xie WD, Lv Q, Wan
G, Li G, Wang H, Lu G, Hu X, et al: MiRNA-20a promotes osteogenic
differentiation of human mesenchymal stem cells by co-regulating
BMP signaling. RNA Biol. 8:829–838. 2011. View Article : Google Scholar : PubMed/NCBI
|