1
|
McLeod CJ, Bos JM, Theis JL, Edwards WD,
Gersh BJ, Ommen SR and Ackerman MJ: Histologic characterization of
hypertrophic cardiomyopathy with and without myofilament mutations.
Am Heart J. 158:799–805. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ashrafian H and Watkins H: Reviews of
translational medicine and genomics in cardiovascular disease: New
disease taxonomy and therapeutic implications cardiomyopathies:
Therapeutics based on molecular phenotype. J Am Coll Cardiol.
49:1251–1264. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Watkins H, McKenna WJ, Thierfelder L, Suk
HJ, Anan R, O'Donoghue A, Spirito P, Matsumori A, Moravec CS,
Seidman JG, et al: Mutations in the genes for cardiac troponin T
and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med.
332:1058–1065. 1995. View Article : Google Scholar : PubMed/NCBI
|
4
|
Maron BJ, Doerer JJ, Haas TS, Tierney DM
and Mueller FO: Sudden deaths in young competitive athletes:
Analysis of 1866 deaths in the United States, 1980–2006.
Circulation. 119:1085–1092. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bradley EW, Ruan MM, Vrable A and Oursler
MJ: Pathway crosstalk between Ras/Raf and PI3K in promotion of
M-CSF-induced MEK/ERK-mediated osteoclast survival. J Cell Biochem.
104:1439–1451. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Efthimiadis GK, Pagourelias ED, Gossios T
and Zegkos T: Hypertrophic cardiomyopathy in 2013: Current
speculations and future perspectives. World J Cardiol. 6:262014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Roma-Rodrigues C and Fernandes AR:
Genetics of hypertrophic cardiomyopathy: Advances and pitfalls in
molecular diagnosis and therapy. Appl Clin Genet.
7:1952014.PubMed/NCBI
|
8
|
Liang D, Han G, Feng X, Sun J, Duan Y and
Lei H: Concerted perturbation observed in a hub network in
Alzheimer's disease. PLoS One. 7:e404982012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Green M and Karp P: The outcomes of
pathway database computations depend on pathway ontology. Nucleic
Acids Res. 34:3687–3697. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Glazko GV and Emmertstreib F: Unite and
conquer: Univariate and multivariate approaches for finding
differentially expressed gene sets. Bioinformatics. 25:2348–2354.
2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhai DK, Liu B, Bai XF and Wen JA:
Identification of biomarkers and pathway-related modules involved
in ovarian cancer based on topological centralities. J BUON.
21:208–220. 2016.PubMed/NCBI
|
12
|
Khatri P, Sirota M and Butte AJ: Ten years
of pathway analysis: Current approaches and outstanding challenges.
PLoS Comput Biol. 8:e10023752012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu X, Tang WH, Zhao XM and Chen L: A
network approach to predict pathogenic genes for Fusarium
graminearum. PLoS One. 5:pii: e13021. 2010.
|
15
|
Chen L, Wang RS and Zhang XS: Biomolecular
Networks: Methods and Applications in Systems Biology. Wiley; 2009,
View Article : Google Scholar
|
16
|
Bandyopadhyay S, Mehta M, Kuo D, Sung MK,
Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M,
et al: Rewiring of genetic networks in response to DNA damage.
Science. 330:1385–1389. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP:
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bolstad BM, Irizarry RA, Astrand M and
Speed TP: A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias.
Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pepper SD, Saunders EK, Edwards LE, Wilson
CL and Miller CJ: The utility of MAS5 expression summary and
detection call algorithms. BMC Bioinformatics. 8:2732007.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Croft D: Building models using Reactome
pathways as templates. In Silico Systems Biology Springer.
1021:pp273–283. 2013. View Article : Google Scholar
|
21
|
Dawson JA, Ye S and Kendziorski C:
R/EBcoexpress: An empirical Bayesian framework for discovering
differential co-expression. Bioinformatics. 28:1939–1940. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Manfield IW, Jen CH, Pinney JW,
Michalopoulos I, Bradford JR, Gilmartin PM and Westhead DR:
Arabidopsis Co-expression Tool (ACT): Web server tools for
microarray-based gene expression analysis. Nucleic Acids Res.
34:(Web Server Issue). W504–W509. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dawson JA and Kendziorski C: An empirical
bayesian approach for identifying differential coexpression in
high-throughput experiments. Biometrics. 68:455–465. 2012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Fraley C and Raftery AE: Model-based
clustering, discriminant analysis and density estimation. J Am Stat
Assoc. 97:611–631. 2002. View Article : Google Scholar
|
26
|
Dawson JA, Dawson M and Ebarrays D:
Package ‘EBcoexpress’.
|
27
|
da Huang W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ford G, Xu Z, Gates A, Jiang J and Ford
BD: Expression analysis systematic explorer (EASE) analysis reveals
differential gene expression in permanent and transient focal
stroke rat models. Brain Res. 1071:226–236. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Huxley HE: Fifty years of muscle and the
sliding filament hypothesis. Eur J Biochem. 271:1403–1415. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kodama A, Lechler T and Fuchs E:
Coordinating cytoskeletal tracks to polarize cellular movements. J
Cell Biol. 167:203–207. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bookwalter CS and Trybus KM: Functional
consequences of a mutation in an expressed human alpha-cardiac
actin at a site implicated in familial hypertrophic cardiomyopathy.
J Biol Chem. 281:16777–16784. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Van Driest SL, Ellsworth EG, Ommen SR,
Tajik AJ, Gersh BJ and Ackerman MJ: Prevalence and spectrum of thin
filament mutations in an outpatient referral population with
hypertrophic cardiomyopathy. Circulation. 108:445–451. 2003.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Rommelaere H, Waterschoot D, Neirynck K,
Vandekerckhove J and Ampe C: Structural plasticity of functional
actin: Pictures of actin binding protein and polymer interfaces.
Structure. 11:1279–1289. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hansen WJ, Cowan NJ and Welch WJ:
Prefoldin-nascent chain complexes in the folding of cytoskeletal
proteins. J Cell Biol. 145:265–277. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Vang S, Corydon TJ, Børglum AD, Scott MD,
Frydman J, Mogensen J, Gregersen N and Bross P: Actin mutations in
hypertrophic and dilated cardiomyopathy cause inefficient protein
folding and perturbed filament formation. FEBS J. 272:2037–2049.
2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hibbs JB Jr, Vavrin Z and Cox JE: Complex
coordinated extracellular metabolism: Acid phosphatases activate
diluted human leukocyte proteins to generate energy flow as NADPH
from purine nucleotide ribose. Redox Biol. 8:271–284. 2016.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Spindler M, Saupe K, Christe M, Sweeney H,
Seidman C, Seidman JG and Ingwall JS: Diastolic dysfunction and
altered energetics in the alphaMHC403/+ mouse model of familial
hypertrophic cardiomyopathy. J Clin Invest. 101:1775–1783. 1998.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Blair E, Redwood C, Ashrafian H, Oliveira
M, Broxholme J, Kerr B, Salmon A, Ostman-Smith I and Watkins H:
Mutations in the gamma(2) subunit of AMP-activated protein kinase
cause familial hypertrophic cardiomyopathy: Evidence for the
central role of energy compromise in disease pathogenesis. Hum Mol
Genet. 10:1215–1220. 2001. View Article : Google Scholar : PubMed/NCBI
|