Targeted inhibition of endoplasmic reticulum stress: New hope for renal fibrosis (Review)
- Authors:
- Ben Ke
- Na Zhu
- Fuli Luo
- Yang Xu
- Xiangdong Fang
-
Affiliations: Department of Nephrology, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, P.R. China, Nanchang University School of Medicine, Nanchang, Jiangxi 330006, P.R. China, Department of Nephrology, Chinese Medicine Hospital in Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China, Department of Nephrology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China, Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: June 13, 2017 https://doi.org/10.3892/mmr.2017.6762
- Pages: 1014-1020
-
Copyright: © Ke et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ortiz A, Covic A, Fliser D, Fouque D, Goldsmith D, Kanbay M, Mallamaci F, Massy ZA, Rossignol P, Vanholder R, et al: Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet. 383:1831–1843. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ke B, Fan C, Yang L and Fang X: Matrix Metalloproteinases-7 and Kidney Fibrosis. Front Physiol. 8:212017. View Article : Google Scholar : PubMed/NCBI | |
Menon MC and Ross MJ: Epithelial-to-mesenchymal transition of tubular epithelial cells in renal fibrosis: A new twist on an old tale. Kidney Int. 89:263–266. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meng XM, Huang XR, Xiao J, Chung AC, Qin W, Chen HY and Lan HY: Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int. 81:266–279. 2012. View Article : Google Scholar : PubMed/NCBI | |
Habib SL and Abboud HE: Tuberin regulates reactive oxygen species in renal proximal cells, kidney from rodents, and kidney from patients with tuberous sclerosis complex. Cancer Sci. 107:1092–1100. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Fan Y, Wang N, Chuang PY, Lee K and He JC: Knockdown of RTN1A attenuates ER stress and kidney injury in albumin overload-induced nephropathy. Am J Physiol Renal Physiol. 310:F409–F415. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chang JW, Kim H, Baek CH, Lee RB, Yang WS and Lee SK: Up-regulation of SIRT1 reduces endoplasmic reticulum stress and renal fibrosis. Nephron. 133:116–128. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu SH, Yang CC, Chan DC, Wu CT, Chen LP, Huang JW, Hung KY and Chiang CK: Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget. 7:22116–22127. 2016.PubMed/NCBI | |
Sun XY, Qin HJ, Zhang Z, Xu Y, Yang XC, Zhao DM, Li XN and Sun LK: Valproate attenuates diabetic nephropathy through inhibition of endoplasmic reticulum stress-induced apoptosis. Mol Med Rep. 13:661–668. 2016.PubMed/NCBI | |
Liu QF, Ye JM, Deng ZY, Yu LX, Sun Q and Li SS: Ameliorating effect of Klotho on endoplasmic reticulum stress and renal fibrosis induced by unilateral ureteral obstruction. Iran J Kidney Dis. 9:291–297. 2015.PubMed/NCBI | |
Lee ES, Kim HM, Kang JS, Lee EY, Yadav D, Kwon MH, Kim YM, Kim HS and Chung CH: Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol Dial Transplant. 31:391–400. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yoshida H, Matsui T, Yamamoto A, Okada T and Mori K: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881–891. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chiang CK, Hsu SP, Wu CT, Huang JW, Cheng HT, Chang YW, Hung KY, Wu KD and Liu SH: Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol Med. 17:1295–1305. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS and Goldstein JL: ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 6:1355–1364. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zeeshan HM, Lee GH, Kim HR and Chae HJ: Endoplasmic reticulum stress and associated ROS. Int J Mol Sci. 17:3272016. View Article : Google Scholar : PubMed/NCBI | |
Kaufman RJ: Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes Dev. 13:1211–1233. 1999. View Article : Google Scholar : PubMed/NCBI | |
Inagi R: Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Nephron Exp Nephrol. 112:E1–E9. 2009. View Article : Google Scholar : PubMed/NCBI | |
Boot-Handford RP and Briggs MD: The unfolded protein response and its relevance to connective tissue diseases. Cell Tissue Res. 339:197–211. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ghosh AP, Klocke BJ, Ballestas ME and Roth KA: CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One. 7:e395862012. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Xu X, Zhao C, Zhao M, Wang H, Zhang B, Wang N, Mao H, Zhang A and Xing C: The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury. Lab Invest. 95:1374–1386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Ding J, Zhang A, Dai W, Liu S, Diao Z, Wang L, Han X and Liu W: The inhibitory effect of quercetin on asymmetric dimethylarginine-induced apoptosis is mediated by the endoplasmic reticulum stress pathway in glomerular endothelial cells. Int J Mol Sci. 15:484–503. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ke B, Zhang A, Wu X and Fang X: The role of Krüppel-like factor 4 in renal fibrosis. Front Physiol. 6:3272015. View Article : Google Scholar : PubMed/NCBI | |
Kassan M, Galán M, Partyka M, Saifudeen Z, Henrion D, Trebak M and Matrougui K: Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice. Arterioscler Thromb Vasc Biol. 32:1652–1661. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roberson EC, Tully JE, Guala AS, Reiss JN, Godburn KE, Pociask DA, Alcorn JF, Riches DW, Dienz O, Janssen-Heininger YM and Anathy V: Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells. Am J Respir Cell Mol Biol. 46:573–581. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marek I, Lichtneger T, Cordasic N, Hilgers KF, Volkert G, Fahlbusch F, Rascher W, Hartner A and Menendez-Castro C: Alpha8 integrin (Itga8) signalling attenuates chronic renal interstitial fibrosis by reducing fibroblast activation, not by interfering with regulation of cell turnover. PLoS One. 11:e01504712016. View Article : Google Scholar : PubMed/NCBI | |
Sutariya B, Jhonsa D and Saraf MN: TGF-β: The connecting link between nephropathy and fibrosis. Immunopharmacol Immunotoxicol. 38:39–49. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vervoort SJ, van Boxtel R and Coffer PJ: The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: Friend or foe? Oncogene. 32:3397–3409. 2013. View Article : Google Scholar : PubMed/NCBI | |
David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Donahue CA and Massagué J: TGF-β tumor suppression through a lethal EMT. Cell. 164:1015–1030. 2016. View Article : Google Scholar : PubMed/NCBI | |
Baek HA, Kim DS, Park HS, Jang KY, Kang MJ, Lee DG, Moon WS, Chae HJ and Chung MJ: Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol. 46:731–739. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Ding J, Zhang A, Dai W, Liu S, Diao Z, Wang L, Han X and Liu W: The inhibitory effect of quercetin on asymmetric dimethylarginine-induced apoptosis is mediated by the endoplasmic reticulum stress pathway in glomerular endothelial cells. Int J Mol Sci. 15:484–503. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park MJ, Oh KS, Nho JH, Kim GY and Kim DI: Asymmetric dimethylarginine (ADMA) treatment induces apoptosis in cultured rat mesangial cells via endoplasmic reticulum stress activation. Cell Biol Int. 40:662–670. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zong L and Wang X: TGF-β improves myocardial function and prevents apoptosis induced by anoxia-reoxygenation, through the reduction of endoplasmic reticulum stress. Can J Physiol Pharmacol. 94:9–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Son H and Moon A: Epithelial-mesenchymal transition and cell invasion. Toxicol Res. 26:245–252. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Hou FF and Nie J: AOPPs and the progression of kidney disease. Kidney Int Suppl (2011). 4:102–106. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Duan N, Wang Y, Shu S, Xiang X, Guo T, Yang L, Zhang S, Tang X and Zhang J: Advanced oxidation protein products induce endothelial-to-mesenchymal transition in human renal glomerular endothelial cells through induction of endoplasmic reticulum stress. J Diabetes Complications. 30:573–579. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Rong G, Bu Y, Zhang S, Zhang M, Zhang J and Liang X: Advanced oxidation protein products induce hypertrophy and epithelial-to-mesenchymal transition in human proximal tubular cells through induction of endoplasmic reticulum stress. Cell Physiol Biochem. 35:816–828. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li HY, Hou FF, Zhang X, Chen PY, Liu SX, Feng JX, Liu ZQ, Shan YX, Wang GB, Zhou ZM, et al: Advanced oxidation protein products accelerate renal fibrosis in a remnant kidney model. J Am Soc Nephrol. 18:528–538. 2007. View Article : Google Scholar : PubMed/NCBI | |
Luo B, Lin Y, Jiang S, Huang L, Yao H, Zhuang Q, Zhao R, Liu H, He C and Lin Z: Endoplasmic reticulum stress eIF2α-ATF4 pathway-mediated cyclooxygenase-2 induction regulates cadmium-induced autophagy in kidney. Cell Death Dis. 7:e22512016. View Article : Google Scholar : PubMed/NCBI | |
Moon SY, Kim HS, Nho KW, Jang YJ and Lee SK: Endoplasmic reticulum stress induces epithelial-mesenchymal transition through autophagy via activation of c-Src kinase. Nephron Exp Nephrol. 126:127–140. 2014. View Article : Google Scholar : PubMed/NCBI | |
Goel P, Manning JA and Kumar S: NEDD4-2 (NEDD4L): The ubiquitin ligase for multiple membrane proteins. Gene. 557:1–10. 2015. View Article : Google Scholar : PubMed/NCBI | |
Al-Qusairi L, Basquin D, Roy A, Stifanelli M, Rajaram RD, Debonneville A, Nita I, Maillard M, Loffing J, Subramanya AR and Staub O: Renal-tubular SGK1 deficiency causes impaired K+ excretion via the loss of regulation of NEDD4-2/WNK1 and ENaC. Am J Physiol Renal Physiol. 311:F330–F342. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Sun RQ, Camera D, Zeng XY, Jo E, Chan SM, Herbert TP, Molero JC and Ye JM: Endoplasmic reticulum stress up-regulates Nedd4-2 to induce autophagy. FASEB J. 30:2549–56. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xian LW, Li TP, Wei YE, Wu SP and Ma L: Relation of advanced oxidation protein products with VEGF and TGF-β1 in colon cancer cells exposed to intermittent hypoxia. Nan Fang Yi Ke Da Xue Xue Bao. 31:619–623. 2011.(In Chinese). PubMed/NCBI | |
Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W, Patel T, Rodriguez AA, Cusimano J, Weiss HL, et al: Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res. 17:252015. View Article : Google Scholar : PubMed/NCBI | |
Shin HS, Ryu ES, Oh ES and Kang DH: Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells. Lab Invest. 95:1157–1173. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kramer B, Ferrari DM, Klappa P, Pöhlmann N and Söling HD: Functional roles and efficiencies of the thioredoxin boxes of calcium-binding proteins 1 and 2 in protein folding. Biochem J. 357:83–95. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zeeshan HM, Lee GH, Kim HR and Chae HJ: Endoplasmic reticulum stress and associated ROS. Int J Mol Sci. 17:3272016. View Article : Google Scholar : PubMed/NCBI | |
Santos CX, Nabeebaccus AA, Shah AM, Camargo LL, Filho SV and Lopes LR: Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: Potential role in hypertension. Antioxid Redox Signal. 20:121–134. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kaneto H, Matsuoka T, Nakatani Y, Kawamori D, Miyatsuka T, Matsuhisa M and Yamasaki Y: Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes. J Mol Med (Berl). 83:429–439. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Xu X, Zhao C, Zhao M, Wang H, Zhang B, Wang N, Mao H, Zhang A and Xing C: The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury. Lab Invest. 95:1374–1386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gross ML, Hanke W, Koch A, Ziebart H, Amann KR and Ritz E: Intraperitoneal protein injection in the axolotl: The amphibian kidney as a novel model to study tubulointerstitial activation. Kidney Int. 62:51–59. 2002. View Article : Google Scholar : PubMed/NCBI | |
He F, Chen S, Wang H, Shao N, Tian X, Jiang H, Liu J, Zhu Z, Meng X and Zhang C: Regulation of CD2-associated protein influences podocyte endoplasmic reticulum stress-mediated apoptosis induced by albumin overload. Gene. 484:18–25. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cybulsky AV, Takano T, Papillon J, Bijian K, Guillemette J and Kennedy CR: Glomerular epithelial cell injury associated with mutant alpha-actinin-4. Am J Physiol Renal Physiol. 297:F987–F995. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ostergaard L, Simonsen U, Eskildsen-Helmond Y, Vorum H, Uldbjerg N, Honoré B and Mulvany MJ: Proteomics reveals lowering oxygen alters cytoskeletal and endoplasmatic stress proteins in human endothelial cells. Proteomics. 9:4457–4467. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ha TS, Park HY, Seong SB and Ahn HY: Angiotensin II induces endoplasmic reticulum stress in podocyte, which would be further augmented by PI3-kinase inhibition. Clin Hypertens. 21:13. 2015. View Article : Google Scholar : PubMed/NCBI | |
Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, et al: TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 37:739–744. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Fang Z, Zhu Z, Yang X, He F and Zhang C: Effect of down-regulation of TRPC6 on the puromycin aminonucleoside-induced apoptosis of mouse podocytes. J Huazhong Univ Sci Technolog Med Sci. 29:417–422. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen S, He FF, Wang H, Fang Z, Shao N, Tian XJ, Liu JS, Zhu ZH, Wang YM, Wang S, et al: Calcium entry via TRPC6 mediates albumin overload-induced endoplasmic reticulum stress and apoptosis in podocytes. Cell Calcium. 50:523–529. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morse E, Schroth J, You YH, Pizzo DP, Okada S, Ramachandrarao S, Vallon V, Sharma K and Cunard R: TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1. Am J Physiol Renal Physiol. 299:F965–F972. 2010. View Article : Google Scholar : PubMed/NCBI | |
Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, Blattner SM, Ikenoue T, Rüegg MA, Hall MN, et al: mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 121:2181–2196. 2011. View Article : Google Scholar : PubMed/NCBI | |
El Karoui K, Viau A, Dellis O, Bagattin A, Nguyen C, Baron W, Burtin M, Broueilh M, Heidet L, Mollet G, et al: Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nat Commun. 7:103302016. View Article : Google Scholar : PubMed/NCBI | |
Nitta K, Okada K, Yanai M and Takahashi S: Aging and chronic kidney disease. Kidney Blood Press Res. 38:109–120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu SH, Wu CT, Huang KH, Wang CC, Guan SS, Chen LP and Chiang CK: C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget. 7:21900–21912. 2016.PubMed/NCBI | |
Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y and Hori M: Beneficial effects of antioxidants in diabetes: Possible protection of pancreatic beta-cells against glucose toxicity. Diabetes. 48:2398–2406. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ou Y, Hou W, Li S, Zhu X, Lin Y, Han J, Duan Z and Gui B: Sodium citrate inhibits endoplasmic reticulum stress in rats with adenine-induced chronic renal failure. Am J Nephrol. 42:14–21. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Lee H, Manson SR, Lindahl M, Evans B, Miner JH, Urano F and Chen YM: Mesencephalic astrocyte-derived neurotrophic factor as a urine biomarker for endoplasmic reticulum stress-related kidney diseases. J Am Soc Nephrol. 27:2974–2982. 2016. View Article : Google Scholar : PubMed/NCBI |