1
|
Guo J, Yu CQ, Lyu J, Guo Y, Bian Z, Zhou
H, Tan Y, Pei P, Chen J, Chen Z, et al: Status of prevalence,
awareness, treatment and controll on hypertension among adults in
10 regions, China. Zhonghua Liu Xing Bing Xue Za Zhi. 37:469–474.
2016.(In Chinese). PubMed/NCBI
|
2
|
Prys-Rroberts C: Anaesthesia and
hypertension. Br J Anaesth. 56:711–724. 1984. View Article : Google Scholar : PubMed/NCBI
|
3
|
Elliott P, O'Hare R, Bill KM, Phillips AS,
Gibson FM and Mirakhur RK: Severe cardiovascular depression with
remifentanil. Anesth Analg. 91:58–61. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sebel PS, Hoke JF, Westmoreland C, Hug CC
Jr, Muir KT and Szlam F: Histamine concentrations and hemodynamic
responses after remifentanil. Anesth Analg. 80:990–993. 1995.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ouattara A, Boccara G, Köckler U, Lecomte
P, Leprince P, Léger P, Riou B, Rama A and Coriat P: Remifentanil
induces systemic arterial vasodilation in humans with a total
artificial heart. Anesthesiology. 100:602–607. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kazmaier S, Hanekop GG, Buhre W, Weyland
A, Busch T, Radke OC, Zoelffel R and Sonntag H: Myocardial
consequences of remifentanil in patients with coronary artery
disease. Br J Anaesth. 84:578–583. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Noseir RK, Ficke DJ, Kundu A, Arain SR and
Ebert TJ: Sympathetic and vascular consequences from remifentanil
in humans. Anesth Analg. 96:1645–1650. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gursoy S, Bagcivan I, Yildirim MK, Berkan
O and Kaya T: Vasorelaxant effect of opioid analgesics on the
isolated human radial artery. Eur J Anaesthesiol. 23:496–500. 2006.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Unlugenc H, Itegin M, Ocal I, Ozalevli M,
Güler T and Isik G: Remifentanil produces vasorelaxation in
isolated rat thoracic aorta strips. Acta Anaesthesiol Scand.
47:65–69. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Paris A, Scholz J, von Knobelsdorff G,
Tonner PH, Schulte AM and Esch J: The effect of remifentanil on
cerebral blood flow velocity. Anesth Analg. 87:569–573. 1998.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Engelhard K, Reeker W, Kochs E and Werner
C: Effect of remifentanil on intracranial pressure and cerebral
blood flow velocity in patients with head trauma. Acta Anaesthesiol
Scand. 48:396–399. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hill MA, Yang Y, Ella SR, Davis MJ and
Braun AP: Large conductance, Ca2+-activated K+ channels
(BKCa) and arteriolar myogenic signaling. FEBS Lett. 584:2033–2042.
2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nelson MT and Quayle JM: Physiological
roles and properties of potassium channels in arterial smooth
muscle. Am J Physiol. 268:C799–C822. 1995.PubMed/NCBI
|
14
|
Laboratory animal welfare: Public Health
Service policy on humane care and use of laboratory animals by
awardee institutions; notice. Federal register. 50:19584–19585.
1985.PubMed/NCBI
|
15
|
Zhang W, Ma KT, Wang Y, Si JQ and Li L:
Inhibitory effect of 18beta-glycyrrhetinic acid on KCl- and
PE-induced constriction of rat renal interlobar artery in vitro.
Sheng Li Xue Bao. 66:195–202. 2014.PubMed/NCBI
|
16
|
Tian WW, Zhao L, Ma KT, Li L and Si JQ:
Isoliquiritigenin relaxes the cerebral basilar artery by enhancing
BKCa current in spontaneously hypertensive rat: Role of sGC/cGMP.
Sheng Li Xue Bao. 67:329–334. 2015.PubMed/NCBI
|
17
|
Li L, Wang R, Ma KT, Li XZ, Zhang CL, Liu
WD, Zhao L and Si JQ: Differential effect of calcium-activated
potassium and chloride channels on rat basilar artery vasomotion. J
Huazhong Univ Sci Technolog Med Sci. 34:482–490. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li L, Zhang W, Shi WY, Ma KT, Zhao L, Wang
Y, Zhang L, Li XZ, Zhu H, Zhang ZS, et al: The enhancement of Cx45
expression and function in renal interlobar artery of spontaneously
hypertensive rats at different age. Kidney Blood Press Res.
40:52–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li XZ, Ma KT, Guan BC, Li L, Zhao L, Zhang
ZS, Si JQ and Jiang ZG: Fenamates block gap junction coupling and
potentiate BKCa channels in guinea pig arteriolar cells. Eur J
Pharmacol. 703:74–82. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lin PT, Liao DQ and Luo NF: Effect of
remifentanil on calcium- activated potassium currents in human
mesenteric arterial smooth muscle cells. Chin J Anesthesiol.
30:1307–1309. 2006.
|
21
|
Liu Y, Hudetz AG, Knaus HG and Rusch NJ:
Increased expression of Ca2+-sensitive K+ channels in
the cerebral microcirculation of genetically hypertensive rats:
Evidence for their protection against cerebral vasospasm. Circ Res.
82:729–737. 1998. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hu Z, Ma A, Tian HY, Xi YT, Fan LH and
Wang TZ: Activity and changed expression of calcium-activated
potassium channel in vascular smooth muscle cells isolated from
mesenteric arteries of spontaneous hypertensive rats. J Xi'an Jiao
tong University (Medical Sciences). 31:424–428. 2010.
|
23
|
Yang Y, Li PY, Cheng J, Mao L, Wen J, Tan
XQ, Liu ZF and Zeng XR: Function of BKCa channels is reduced in
human vascular smooth muscle cells from Han Chinese patients with
hypertension. Hypertension. 61:519–525. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu QM: Clinical Anesthesiology. People's
Medical Publishing House; Beijing: pp. 242–243. 2008, (In
Chinese).
|
25
|
Su X, Wachtel RE and Gebhart GF:
Inhibition of calcium currents in rat colon sensory neurons by K-
but not mu- or delta-opioids. J Neurophysiol. 80:3112–3119.
1998.PubMed/NCBI
|
26
|
Twitchell WA and Rane SG: Opioid peptide
modulation of Ca(2+)-dependent K+ and voltage-activated
Ca2+ currents in bovine adrenal chromaffin cells.
Neuron. 10:701–709. 1993. View Article : Google Scholar : PubMed/NCBI
|
27
|
Leff P: The two-state model of receptor
activation. Trends Pharmacol Sci. 16:89–97. 1995. View Article : Google Scholar : PubMed/NCBI
|