1
|
Bianchi G and Munshi NC: Pathogenesis
beyond the cancer clone(s) in multiple myeloma. Blood.
125:3049–3058. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hideshima T, Mitsiades C, Tonon G,
Richardson PG and Anderson KC: Understanding multiple myeloma
pathogenesis in the bone marrow to identify new therapeutic
targets. Nat Rev Cancer. 7:585–598. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Manier S, Sacco A, Leleu X, Ghobrial IM
and Roccaro AM: Bone marrow microenvironment in multiple myeloma
progression. J Biomed Biotechnol. 2012:1574962012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dankbar B, Padró T, Leo R, Feldmann B,
Kropff M, Mesters RM, Serve H, Berdel WE and Kienast J: Vascular
endothelial growth factor and interleukin-6 in paracrine
tumor-stromal cell interactions in multiple myeloma. Blood.
95:2630–2636. 2000.PubMed/NCBI
|
5
|
Gupta D, Treon SP, Shima Y, Hideshima T,
Podar K, Tai YT, Lin B, Lentzsch S, Davies FE, Chauhan D, et al:
Adherence of multiple myeloma cells to bone marrow stromal cells
upregulates vascular endothelial growth factor secretion:
Therapeutic applications. Leukemia. 15:1950–1961. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nefedova Y, Cheng P, Alsina M, Dalton WS
and Gabrilovich DI: Involvement of Notch-1 signaling in bone marrow
stroma-mediated de novo drug resistance of myeloma and other
malignant lymphoid cell lines. Blood. 103:3503–3510. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Han JH, Choi SJ, Kurihara N, Koide M, Oba
Y and Roodman GD: Macrophage inflammatory protein-1alpha is an
osteoclastogenic factor in myeloma that is independent of receptor
activator of nuclear factor kappaB ligand. Blood. 97:3349–3353.
2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Abe M, Hiura K, Wilde J, Moriyama K,
Hashimoto T, Ozaki S, Wakatsuki S, Kosaka M, Kido S, Inoue D and
Matsumoto T: Role for macrophage inflammatory protein (MIP)-1alpha
and MIP-1beta in the development of osteolytic lesions in multiple
myeloma. Blood. 100:2195–2202. 2002.PubMed/NCBI
|
9
|
Bergfeld SA and DeClerck YA: Bone
marrow-derived mesenchymal stem cells and the tumor
microenvironment. Cancer Metastasis Rev. 29:249–261. 2010.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kassen D, Moore S, Percy L, Herledan G,
Bounds D, Rodriguez-Justo M, Croucher P and Yong K: The bone marrow
stromal compartment in multiple myeloma patients retains capability
for osteogenic differentiation in vitro: Defining the stromal
defect in myeloma. Br J Haematol. 167:194–206. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Noll JE, Williams SA, Tong CM, Wang H,
Quach JM, Purton LE, Pilkington K, To LB, Evdokiou A, Gronthos S
and Zannettino AC: Myeloma plasma cells alter the bone marrow
microenvironment by stimulating the proliferation of mesenchymal
stromal cells. Haematologica. 99:163–171. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Berenstein R, Blau O, Nogai A, Waechter M,
Slonova E, Schmidt-Hieber M, Kunitz A, Pezzutto A, Doerken B and
Blau IW: Multiple myeloma cells alter the senescence phenotype of
bone marrow mesenchymal stromal cells under participation of the
DLK1-DIO3 genomic region. BMC Cancer. 15:682015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wallace SR, Oken MM, Lunetta KL,
Panoskaltsis-Mortari A and Masellis AM: Abnormalities of bone
marrow mesenchymal cells in multiple myeloma patients. Cancer.
91:1219–1230. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Corre J, Labat E, Espagnolle N, Hébraud B,
Avet-Loiseau H, Roussel M, Huynh A, Gadelorge M, Cordelier P, Klein
B, et al: Bioactivity and prognostic significance of growth
differentiation factor GDF15 secreted by bone marrow mesenchymal
stem cells in multiple myeloma. Cancer Res. 72:1395–1406. 2012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Arnulf B, Lecourt S, Soulier J, Ternaux B,
Lacassagne MN, Crinquette A, Dessoly J, Sciaini AK, Benbunan M,
Chomienne C, et al: Phenotypic and functional characterization of
bone marrow mesenchymal stem cells derived from patients with
multiple myeloma. Leukemia. 21:158–163. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li B, Shi M, Li J, Zhang H, Chen B, Chen
L, Gao W, Giuliani N and Zhao RC: Elevated tumor necrosis
factor-alpha suppresses TAZ expression and impairs osteogenic
potential of Flk-1+ mesenchymal stem cells in patients
with multiple myeloma. Stem Cells Dev. 16:921–930. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
André T, Najar M, Stamatopoulos B, Pieters
K, Pradier O, Bron D, Meuleman N and Lagneaux L: Immune impairments
in multiple myeloma bone marrow mesenchymal stromal cells. Cancer
Immunol Immunother. 64:213–224. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Roccaro AM, Sacco A, Maiso P, Azab AK, Tai
YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, et al: BM
mesenchymal stromal cell-derived exosomes facilitate multiple
myeloma progression. J Clin Invest. 123:1542–1555. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xu S, Santini Cecilia G, De Veirman K,
Vande Broek I, Leleu X, De Becker A, Van Camp B, Vanderkerken K and
Van Riet I: Upregulation of miR-135b is involved in the impaired
osteogenic differentiation of mesenchymal stem cells derived from
multiple myeloma patients. PLoS One. 8:e797522013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Garayoa M, Garcia JL, Santamaria C,
Garcia-Gomez A, Blanco JF, Pandiella A, Hernández JM, Sanchez-Guijo
FM, del Cañizo MC, Gutiérrez NC and Miguel San JF: Mesenchymal stem
cells from multiple myeloma patients display distinct genomic
profile as compared with those from normal donors. Leukemia.
23:1515–1527. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Blackburn EH: Structure and function of
telomeres. Nature. 350:569–573. 1991. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Harley CB, Futcher AB and Greider CW:
Telomeres shorten during ageing of human fibroblasts. Nature.
345:458–460. 1990. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Allsopp RC, Vaziri H, Patterson C,
Goldstein S, Younglai EV, Futcher AB, Greider CW and Harley CB:
Telomere length predicts replicative capacity of human fibroblasts.
Proc Natl Acad Sci USA. 89:10114–10118. 1992. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zimmermann S, Voss M, Kaiser S, Kapp U,
Waller CF and Martens UM: Lack of telomerase activity in human
mesenchymal stem cells. Leukemia. 17:1146–1149. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Choumerianou DM, Martimianaki G, Stiakaki
E, Kalmanti L, Kalmanti M and Dimitriou H: Comparative study of
stemness characteristics of mesenchymal cells from bone marrow of
children and adults. Cytotherapy. 12:881–887. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Banfi A, Bianchi G, Notaro R, Luzzatto L,
Cancedda R and Quarto R: Replicative aging and gene expression in
long-term cultures of human bone marrow stromal cells. Tissue Eng.
8:901–910. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ju Z, Jiang H, Jaworski M, Rathinam C,
Gompf A, Klein C, Trumpp A and Rudolph KL: Telomere dysfunction
induces environmental alterations limiting hematopoietic stem cell
function and engraftment. Nat Med. 13:742–747. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cawthon RM: Telomere measurement by
quantitative PCR. Nucleic Acids Res. 30:e472002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ci X, Li B, Ma X, Kong F, Zheng C,
Björkholm M, Jia J and Xu D: Bortezomib-mediated down-regulation of
telomerase and disruption of telomere homeostasis contributes to
apoptosis of malignant cells. Oncotarget. 6:38079–38092. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Meyerson M, Counter CM, Eaton EN, Ellisen
LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ,
Liu Q, et al: hEST2, the putative human telomerase catalytic
subunit gene, is up-regulated in tumor cells and during
immortalization. Cell. 90:785–795. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Reagan MR and Ghobrial IM: Multiple
myeloma mesenchymal stem cells: Characterization, origin, and
tumor-promoting effects. Clin Cancer Res. 18:342–349. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Akiyama M, Hideshima T, Hayashi T, Tai YT,
Mitsiades CS, Mitsiades N, Chauhan D, Richardson P, Munshi NC and
Anderson KC: Cytokines modulate telomerase activity in a human
multiple myeloma cell line. Cancer Res. 62:3876–3882.
2002.PubMed/NCBI
|
34
|
Bolzoni M, Donofrio G, Storti P, Guasco D,
Toscani D, Lazzaretti M, Bonomini S, Agnelli L, Capocefalo A, Dalla
Palma B, et al: Myeloma cells inhibit non-canonical wnt co-receptor
ror2 expression in human bone marrow osteoprogenitor cells: Effect
of wnt5a/ror2 pathway activation on the osteogenic differentiation
impairment induced by myeloma cells. Leukemia. 27:451–463. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Li B, Fu J, Chen P and Zhuang W:
Impairment in immunomodulatory function of mesenchymal stem cells
from multiple myeloma patients. Arch Med Res. 41:623–633. 2010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Lentzsch S, Gries M, Janz M, Bargou R,
Dörken B and Mapara MY: Macrophage inflammatory protein 1-alpha
(MIP-1 alpha) triggers migration and signaling cascades mediating
survival and proliferation in multiple myeloma (MM) cells. Blood.
101:3568–3573. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Vallet S, Pozzi S, Patel K, Vaghela N,
Fulciniti MT, Veiby P, Hideshima T, Santo L, Cirstea D, Scadden DT,
et al: A novel role for CCL3 (MIP-1α) in myeloma-induced bone
disease via osteocalcin downregulation and inhibition of osteoblast
function. Leukemia. 25:1174–1181. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Van Ziffle JA, Baerlocher GM and Lansdorp
PM: Telomere length in subpopulations of human hematopoietic cells.
Stem Cells. 21:654–660. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Samsonraj RM, Raghunath M, Hui JH, Ling L,
Nurcombe V and Cool SM: Telomere length analysis of human
mesenchymal stem cells by quantitative PCR. Gene. 519:348–355.
2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ge W, Jiang J, Arp J, Liu W, Garcia B and
Wang H: Regulatory T-cell generation and kidney allograft tolerance
induced by mesenchymal stem cells associated with indoleamine
2,3-dioxygenase expression. Transplantation. 90:1312–1320. 2010.
View Article : Google Scholar : PubMed/NCBI
|