1
|
Neunert CE: Current management of immune
thrombocytopenia. Hematology Am Soc Hematol Educ Program.
2013:276–282. 2013.PubMed/NCBI
|
2
|
Varga-Szabo D, Pleines I and Nieswandt B:
Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc
Biol. 28:403–412. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Denis MM, Tolley ND, Bunting M, Schwertz
H, Jiang H, Lindemann S, Yost CC, Rubner FJ, Albertine KH, Swoboda
KJ, et al: Escaping the nuclear confines: Signal-dependent pre-mRNA
splicing in anucleate platelets. Cell. 122:379–391. 2005.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Dittrich M, Birschmann I, Pfrang J,
Herterich S, Smolenski A, Walter U and Dandekar T: Analysis of SAGE
data in human platelets: Features of the transcriptome in an
anucleate cell. Thromb Haemost. 95:643–651. 2006.PubMed/NCBI
|
5
|
Schwertz H, Tolley ND, Foulks JM, Denis
MM, Risenmay BW, Buerke M, Tilley RE, Rondina MT, Harris EM, Kraiss
LW, et al: Signal-dependent splicing of tissue factor pre-mRNA
modulates the thrombogenicity of human platelets. J Exp Med.
203:2433–2440. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rowley JW, Oler AJ, Tolley ND, Hunter BN,
Low EN, Nix DA, Yost CC, Zimmerman GA and Weyrich AS: Genome-wide
RNA-seq analysis of human and mouse platelet transcriptomes. Blood.
118:e101–e111. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Landry P, Plante I, Ouellet DL, Perron MP,
Rousseau G and Provost P: Existence of a microRNA pathway in
anucleate platelets. Nat Struct Mol Biol. 16:961–966. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bray PF, McKenzie SE, Edelstein LC,
Nagalla S, Delgrosso K, Ertel A, Kupper J, Jing Y, Londin E, Loher
P, et al: The complex transcriptional landscape of the anucleate
human platelet. BMC Genomics. 14:12013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Londin ER, Hatzimichael E, Loher P,
Edelstein L, Shaw C, Delgrosso K, Fortina P, Bray PF, McKenzie SE
and Rigoutsos I: The human platelet: Strong transcriptome
correlations among individuals associate weakly with the platelet
proteome. Biol Direct. 9:32014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Freedman JE, Larson MG, Tanriverdi K,
O'Donnell CJ, Morin K, Hakanson AS, Vasan RS, Johnson AD, Iafrati
MD and Benjamin EJ: Relation of platelet and leukocyte inflammatory
transcripts to body mass index in the Framingham heart study.
Circulation. 122:119–129. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lood C, Amisten S, Gullstrand B, Jönsen A,
Allhorn M, Truedsson L, Sturfelt G, Erlinge D and Bengtsson AA:
Platelet transcriptional profile and protein expression in patients
with systemic lupus erythematosus: Up-regulation of the type I
interferon system is strongly associated with vascular disease.
Blood. 116:1951–1957. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gatsiou A, Boeckel JN, Randriamboavonjy V
and Stellos K: MicroRNAs in platelet biogenesis and function:
Implications in vascular homeostasis and inflammation. Curr Vasc
Pharmacol. 10:524–531. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Burenbatu, Borjigin M, Eerdunduleng, Huo
W, Gong C, Hasengaowa, Zhang G, Longmei, Li M, Zhang X, et al:
Profiling of miRNA expression in immune thrombocytopenia patients
before and after Qishunbaolier (QSBLE) treatment. Biomed
Pharmacother. 75:196–204. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Qian BH, Ye X, Zhang L, Sun Y, Zhang JR,
Gu ML, Qin Q, Chen J and Deng AM: Increased miR-155 expression in
peripheral blood mononuclear cells of primary immune
thrombocytopenia patients was correlated with serum cytokine
profiles. Acta Haematol. 133:257–263. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rodeghiero F, Stasi R, Gernsheimer T,
Michel M, Provan D, Arnold DM, Bussel JB, Cines DB, Chong BH,
Cooper N, et al: Standardization of terminology, definitions and
outcome criteria in immune thrombocytopenic purpura of adults and
children: Report from an international working group. Blood.
113:2386–2393. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yu S, Deng G, Qian D, Xie Z, Sun H, Huang
D and Li Q: Detection of apoptosis-associated microRNA in human
apheresis platelets during storage by quantitative real-time
polymerase chain reaction analysis. Blood Transfus. 12:541–547.
2014.PubMed/NCBI
|
17
|
Kozomara A and Griffiths-Jones S: miRBase:
Annotating high confidence microRNAs using deep sequencing data.
Nucleic Acids Res. 42:(Database issue). D68–D73. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Dweep H and Gretz N: miRWalk2.0: A
comprehensive atlas of microRNA-target interactions. Nat Methods.
12:6972015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiao X, Sherman BT, da Huang W, Stephens
R, Baseler MW, Lane HC and Lempicki RA: DAVID-WS: A stateful web
service to facilitate gene/protein list analysis. Bioinformatics.
28:1805–1806. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tabas-Madrid D, Nogales-Cadenas R and
Pascual-Montano A: GeneCodis3: A non-redundant and modular
enrichment analysis tool for functional genomics. Nucleic Acids
Res. 40:(Web Server issue). W478–W483. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li H, Zhao H, Xue F, Zhang X, Zhang D, Ge
J, Yang Y, Xuan M, Fu R and Yang R: Reduced expression of miR409-3p
in primary immune thrombocytopenia. Br J Haematol. 161:128–135.
2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Guo Y, Qu W, Wang YH, Liu H, Li LJ, Wang
HQ, Fu R, Liu H, Wu YH, Guan J, et al: The role of miR-155 in
pathogenesis of immune thrombocytopenia. Zhonghua Yi Xue Za Zhi.
96:1103–1107. 2016.(In Chinese). PubMed/NCBI
|
25
|
Bay A, Coskun E, Oztuzcu S, Ergun S,
Yilmaz F and Aktekin E: Plasma microRNA profiling of pediatric
patients with immune thrombocytopenic purpura. Blood Coagul
Fibrinolysis. 25:379–383. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kottke-Marchant K: Importance of platelets
and platelet response in acute coronary syndromes. Cleve Clin J
Med. 76:(Suppl 1). S2–S7. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Girardot M, Pecquet C, Boukour S, Knoops
L, Ferrant A, Vainchenker W, Giraudier S and Constantinescu SN:
miR-28 is a thrombopoietin receptor targeting microRNA detected in
a fraction of myeloproliferative neoplasm patient platelets. Blood.
116:437–445. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nagalla S, Shaw C, Kong X, Kondkar AA,
Edelstein LC, Ma L, Chen J, McKnight GS, López JA, Yang L, et al:
Platelet microRNA-mRNA coexpression profiles correlate with
platelet reactivity. Blood. 117:5189–5197. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yu S, Huang H, Deng G, Xie Z, Ye Y, Guo R,
Cai X, Hong J, Qian D, Zhou X, et al: miR-326 targets antiapoptotic
Bcl-xL and mediates apoptosis in human platelets. PLoS One.
10:e01227842015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Weyrich AS, Schwertz H, Kraiss LW and
Zimmerman GA: Protein synthesis by platelets: Historical and new
perspectives. J Thromb Haemost. 7:241–246. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
McRedmond JP, Park SD, Reilly DF,
Coppinger JA, Maguire PB, Shields DC and Fitzgerald DJ: Integration
of proteomics and genomics in platelets: A profile of platelet
proteins and platelet-specific genes. Mol Cell Proteomics.
3:133–144. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gnatenko DV, Perrotta PL and Bahou WF:
Proteomic approaches to dissect platelet function: Half the story.
Blood. 108:3983–3991. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Colombo G, Gertow K, Marenzi G, Brambilla
M, De Metrio M, Tremoli E and Camera M: Gene expression profiling
reveals multiple differences in platelets from patients with stable
angina or non-ST elevation acute coronary syndrome. Thromb Res.
128:161–168. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rowley JW and Weyrich AS: Coordinate
expression of transcripts and proteins in platelets. Blood.
121:5255–5256. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Harrison P and Goodall AH: ‘Message in the
platelet’-more than just vestigial mRNA. Platelets. 19:395–404.
2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang HW, Zhou P, Wang KZ, Liu JB, Huang
YS, Tu YT, Deng ZH, Zhu XD and Hang YL: Platelet proteomics in
diagnostic differentiation of primary immune thrombocytopenia using
SELDI-TOF-MS. Clin Chim Acta. 455:75–79. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Qiao J, Liu Y, Li D, Wu Y, Li X, Yao Y,
Niu M, Fu C, Li H, Ma P, et al: Imbalanced expression of Bcl-xL and
Bax in platelets treated with plasma from immune thrombocytopenia.
Immunol Res. 64:604–609. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mitchell WB, Pinheiro MP, Boulad N, Kaplan
D, Edison MN, Psaila B, Karpoff M, White MJ, Josefsson EC, Kile BT
and Bussel JB: Effect of thrombopoietin receptor agonists on the
apoptotic profile of platelets in patients with chronic immune
thrombocytopenia. Am J Hematol. 89:E228–E234. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Winkler J, Kroiss S, Rand ML, Azzouzi I,
Bang KW Annie, Speer O and Schmugge M: Platelet apoptosis in
paediatric immune thrombocytopenia is ameliorated by intravenous
immunoglobulin. Br J Haematol. 156:508–515. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Osman A and Fälker K: Characterization of
human platelet microRNA by quantitative PCR coupled with an
annotation network for predicted target genes. Platelets.
22:433–441. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang W, Wan M, Ma L, Liu X and He J:
Protective effects of ADAM8 against cisplatin-mediated apoptosis in
non-small-cell lung cancer. Cell Biol Int. 37:47–53. 2013.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Kroll H, Sun QH and Santoso S: Platelet
endothelial cell adhesion molecule-1 (PECAM-1) is a target
glycoprotein in drug-induced thrombocytopenia. Blood. 96:1409–1414.
2000.PubMed/NCBI
|
43
|
Ulger Z, Aksu S, Aksoy DY, Koksal D,
Haznedaroglu IC and Kirazli S: The adhesion molecules of L-selectin
and ICAM-1 in thrombocytosis and thrombocytopenia. Platelets.
21:49–52. 2010. View Article : Google Scholar : PubMed/NCBI
|