1
|
Heitzer T, Schlinzig T, Krohn K, Meinertz
T and Münzel T: Endothelial dysfunction, oxidative stress, and risk
of cardiovascular events in patients with coronary artery disease.
Circulation. 104:2673–2678. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dong F, Zhang X, Wold LE, Ren Q, Zhang Z
and Ren J: Endothelin-1 enhances oxidative stress, cell
proliferation and reduces apoptosis in human umbilical vein
endothelial cells: Role of ETB receptor, NADPH oxidase and
caveolin-1. Brit J Pharmacol. 145:323–333. 2005. View Article : Google Scholar
|
3
|
Assmus B, Urbich C, Aicher A, Hofmann WK,
Haendeler J, Rössig L, Spyridopoulos I, Zeiher AM and Dimmeler S:
HMG-CoA reductase inhibitors reduce senescence and increase
proliferation of endothelial progenitor cells via regulation of
cell cycle regulatory genes. Circ Res. 92:1049–1055. 2003.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Clapp BR, Hingorani AD, Kharbanda RK,
Mohamed-Ali V, Stephens JW, Vallance P and MacAllister RJ:
Inflammation-induced endothelial dysfunction involves reduced
nitric oxide bioavailability and increased oxidant stress.
Cardiovasc Res. 64:172–178. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Brown DI and Griendling KK: Regulation of
signal transduction by reactive oxygen species in the
cardiovascular system. Circ Res. 116:531–549. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ceriello A and Motz E: Is oxidative stress
the pathogenic mechanism underlying insulin resistance, diabetes,
and cardiovascular disease? The common soil hypothesis revisited.
Arterioscl Throm Vas Biol. 24:816–823. 2004. View Article : Google Scholar
|
7
|
Duan CL, Kang ZY, Lin CR, Jiang Y, Liu JX
and Tu PF: Two new homoisoflavonoids from the fibrous roots of
Ophiopogon japonicus (Thunb.) Ker-Gawl. J Asian Nat Prod
Res. 11:876–879. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kou J, Sun Y, Lin Y, Cheng Z, Zheng W, Yu
B and Xu Q: Anti-inflammatory activities of aqueous extract from
Radix Ophiopogon japonicus and its two constituents. Biol
Pharma Bull. 28:1234–1238. 2005. View Article : Google Scholar
|
9
|
Kou J, Tian Y, Tang Y, Yan J and Yu B:
Antithrombotic activities of aqueous extract from Radix
Ophiopogon japonicus and its two constituents. Biol Pharm
Bull. 29:1267–1270. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zheng Q, Feng Y, Xu DS, Lin X and Chen YZ:
Influence of sulfation on anti-myocardial ischemic activity of
Ophiopogon japonicus polysaccharide. J Asian Nat Prod Res.
11:306–321. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang S, Zhang Z, Lin X, Xu DS, Feng Y and
Ding K: A polysaccharide, MDG-1, induces S1P1 and bFGF expression
and augments survival and angiogenesis in the ischemic heart.
Glycobiology. 20:473–484. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lee YJ, Kang IJ, Bünger R and Kang YH:
Enhanced survival effect of pyruvate correlates MAPK and NF-kappaB
activation in hydrogen peroxide-treated human endothelial cells. J
Appl Physiol (1985). 96:792–801. 2004. View Article : Google Scholar
|
13
|
Kao CL, Chen LK, Chang YL, Yung MC, Hsu
CC, Chen YC, Lo WL, Chen SJ, Ku HH and Hwang SJ: Resveratrol
protects human endothelium from H(2)O(2)-induced oxidative stress
and senescence via SirT1 activation. J Atheroscl Throm. 17:970–979.
2010. View
Article : Google Scholar
|
14
|
Pritchard KA, Ou J, Ou Z, Shi Y, Franciosi
JP, Signorino P, Kaul S, Ackland-Berglund C, Witte K, Holzhauer S,
et al: Hypoxia-induced acute lung injury in murine models of sickle
cell disease. Am J Physiol Lung Cell Mol Physiol. 286:L705–L714.
2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Matsushita H, Morishita R, Nata T, Aoki M,
Nakagami H, Taniyama Y, Yamamoto K, Higaki J, Yasufumi K and
Ogihara T: Hypoxia-induced endothelial apoptosis through nuclear
factor-kappaB (NF-kappaB)-mediated bcl-2 suppression: In vivo
evidence of the importance of NF-kappaB in endothelial cell
regulation. Circ Res. 86:974–981. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chrissobolis S and Faraci FM: The role of
oxidative stress and NADPH oxidase in cerebrovascular disease.
Trends Mol Med. 14:495–502. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang S, Lin X, Wang LY, Ruan KF, Feng Y
and Li XY: A polysaccharides MDG-1 augments survival in the
ischemic heart by inducing S1P release and S1P1 expression. Int J
Biol Macromol. 50:734–740. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shi LL, Li Y, Wang Y and Feng Y: MDG-1, an
Ophiopogon polysaccharide, regulate gut microbiota in
high-fat diet-induced obese C57BL/6 mice. Int J Biol Macromol.
81:576–583. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Abello PA, Fidler SA, Bulkley GB and
Buchman TG: Antioxidants modulate induction of programmed
endothelial cell death (apoptosis) by endotoxin. Arch Surg.
129:134–141. 1994. View Article : Google Scholar : PubMed/NCBI
|
20
|
Watanabe N, Zmijewski JW, Takabe W,
Umezu-Goto M, Le Goffe C, Sekine A, Landar A, Watanabe A, Aoki J,
Arai H, et al: Activation of mitogen-activated protein kinases by
lysophosphatidylcholine-induced mitochondrial reactive oxygen
species generation in endothelial cells. Am J Pathol.
168:1737–1748. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lin SJ, Shyue SK, Liu PL, Chen YH, Ku HH,
Chen JW, Tam κB and Chen YL: Adenovirus-mediated overexpression of
catalase attenuates oxLDL-induced apoptosis in human aortic
endothelial cells via AP-1 and C-Jun N-terminal
kinase/extracellular signal-regulated kinase mitogen-activated
protein kinase pathways. J Mol Cell Cardiol. 36:129–139. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Usatyuk PV, Vepa S, Watkins T, He D,
Parinandi NL and Natarajan V: Redox regulation of reactive oxygen
species-induced p38 MAP kinase activation and barrier dysfunction
in lung microvascular endothelial cells. Antioxid Redox Sign.
5:723–730. 2003. View Article : Google Scholar
|
23
|
Wang LY, Wang Y, Xu DS, Ruan KF, Feng Y
and Wang S: MDG-1, a polysaccharide from Ophiopogon
japonicus exerts hypoglycemic effects through the PI3K/Akt
pathway in a diabetic KKAy mouse model. J Ethnopharmacol.
143:347–354. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cai H: Hydrogen peroxide regulation of
endothelial function: Origins, mechanisms, and consequences.
Cardiovasc Res. 68:26–36. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Qian J, Jiang F, Wang B, Yu Y, Zhang X,
Yin Z and Liu C: Ophiopogonin D prevents
H2O2-induced injury in primary human
umbilical vein endothelial cells. J Ethnopharmacol. 128:438–445.
2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang C, Yang Z, Zhang M, Dong Q, Wang X,
Lan A, Zeng F, Chen P, Wang C and Feng J: Hydrogen sulfide protects
against chemical hypoxia-induced cytotoxicity and inflammation in
HaCaT cells through inhibition of ROS/NF-κB/COX-2 pathway. PLoS
One. 6:e219712011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chi Y and Kim H: Suppression of
cyclooxygenase-2 expression of skin fibroblasts by wogonin, a plant
flavone from Scutellaria radix. Prostaglandins Leukot Essent
Fatty Acids. 72:59–66. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li B, Li YM, Li X, Shi B, He MY, Zhu XL,
Zhou WC, Wachtel MS and Frezza E: COX-2 inhibition improves immune
system homeostasis and decreases liver damage in septic rats. J
Surg Res. 157:43–47. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Waxman AB, Mahboubi K, Knickelbein RG,
Mantell LL, Manzo N, Pober JS and Elias JA: Interleukin-11 and
interleukin-6 protect cultured human endothelial cells from
H2O2-induced cell death. Am J Respir Cell Mol
Biol. 29:513–522. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hu L, Sun Y and Hu J: Catalpol inhibits
apoptosis in hydrogen peroxide-induced endothelium by activating
the PI3K/Akt signaling pathway and modulating expression of Bcl-2
and Bax. Eur J Pharmacol. 628:155–163. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Olivetti G, Abbi R, Quaini F, Kajstura J,
Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski
S, et al: Apoptosis in the failing human heart. New Engl J Med.
336:1131–1141. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sun XM, Bratton SB, Butterworth M,
MacFarlane M and Cohen GM: Bcl-2 and Bcl-xL inhibit CD95-mediated
apoptosis by preventing mitochondrial release of Smac/DIABLO and
subsequent inactivation of X-linked inhibitor-of-apoptosis protein.
J Biol Chem. 277:11345–11351. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fukamachi Y, Karasaki Y, Sugiura T, Itoh
H, Abe T, Yamamura K and Higashi K: Zinc suppresses apoptosis of
U937 cells induced by hydrogen peroxide through an increase of the
Bcl-2/Bax ratio. Biochem Biophys Res Commun. 246:364–369. 1998.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Yamakawa H, Ito Y, Naganawa T, Banno Y,
Nakashima S, Yoshimura S, Sawada M, Nishimura Y, Nozawa Y and Sakai
N: Activation of caspase-9 and-3 during
H2O2-induced apoptosis of PC12 cells
independent of ceramide formation. Neurol Res. 22:556–564. 2000.
View Article : Google Scholar : PubMed/NCBI
|