Sexual dimorphism of frailty and cognitive impairment: Potential underlying mechanisms (Review)
- Authors:
- Qingwei Ruan
- Grazia D'onofrio
- Tao Wu
- Antonio Greco
- Daniele Sancarlo
- Zhuowei Yu
-
Affiliations: Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China, Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy - Published online on: July 14, 2017 https://doi.org/10.3892/mmr.2017.6988
- Pages: 3023-3033
This article is mentioned in:
Abstract
Collard RM, Boter H, Schoevers RA and Voshaar RC Oude: Prevalence of frailty in community-dwelling older persons: A systematic review. J Am Geriatr Soc. 60:1487–1492. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fujishima M and Kiyohara Y: Incidence and risk factors of dementia in a defined elderly Japanese population: The Hisayama study. Ann NY Acad Sci. 977:1–8. 2002. View Article : Google Scholar : PubMed/NCBI | |
Andersen K, Launer LJ, Dewey ME, Letenneur L, Ott A, Copeland JR, Dartigues JF, Kragh-Sorensen P, Baldereschi M, Brayne C, et al: Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. EURODEM Incidence Research Group. Neurology. 53:1992–1997. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Hendrie HC, Hall KS and Hui S: The relationships between age, sex, and the incidence of dementia and Alzheimer disease: A meta-analysis. Arch Gen Psychiatry. 55:809–815. 1998. View Article : Google Scholar : PubMed/NCBI | |
Read S, Pedersen NL, Gatz M, Berg S, Vuoksimaa E, Malmberg B, Johansson B and McClearn GE: Sex differences after all those years? Heritability of cognitive abilities in old age. J Gerontol B Psychol Sci Soc Sci. 61:P137–P143. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li R and Singh M: Sex differences in cognitive impairment and Alzheimer's disease. Front Neuroendocrinol. 35:385–403. 2014. View Article : Google Scholar : PubMed/NCBI | |
Letenneur L, Gilleron V, Commenges D, Helmer C, Orgogozo JM and Dartigues JF: Are sex and educational level independent predictors of dementia and Alzheimer's disease? Incidence data from the PAQUID project. J Neurol Neurosurg Psychiatry. 66:177–183. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fratiglioni L, Viitanen M, Von Strauss E, Tontodonati V, Herlitz A and Winblad B: Very old women at highest risk of dementia and Alzheimer's disease: Incidence data from the kungsholmen project, stockholm. Neurology. 48:132–138. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ott A, Breteler MM, Van Harskamp F, Stijnen T and Hofman A: Incidence and risk of dementia. The rotterdam study. Am J Epidemiol. 147:574–580. 1998. View Article : Google Scholar : PubMed/NCBI | |
Matthews F, Brayne C, et al: Medical Research Council Cognitive Function and Ageing Study Investigators: The incidence of dementia in England and Wales: Findings from the five identical sites of the MRC CFA study. PLoS Med. 2:e1932005. View Article : Google Scholar : PubMed/NCBI | |
Roubenoff R: Sarcopenia: A major modifiable cause of frailty in the elderly. J Nutr Health Aging. 4:140–142. 2000.PubMed/NCBI | |
Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ and Lindeman RD: Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 147:755–763. 1998. View Article : Google Scholar : PubMed/NCBI | |
Morley JE, Anker SD and von Haehling S: Prevalence, incidence, and clinical impact of sarcopenia: Facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle. 5:253–259. 2014. View Article : Google Scholar : PubMed/NCBI | |
Legrand D, Vaes B, Mathei C, Swine C and Degryse JM: The prevalence of sarcopenia in very old individuals according to the European consensus definition: Insights from the BELFRAIL study. Age Ageing. 42:727–734. 2013. View Article : Google Scholar : PubMed/NCBI | |
Masanes F, Culla A, Navarro-Gonzalez M, Navarro-Lopez MC, Sacanella E, Torres B and Lopez-Soto A: Prevalence of sarcopenia in healthy community-dwelling elderly in an urban area of Barcelona (Spain). J Nutr Health Aging. 16:184–187. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim YS, Lee Y, Chung YS, Lee DJ, Joo NS, Hong D, Song Ge, Kim HJ, Choi YJ and Kim KM: Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the fourth Korean national health and nutritional examination surveys. J Gerontol A Biol Sci Med Sci. 67:1107–1113. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu IC, Lin CC, Hsiung CA, Wang CY, Wu CH, Chan DC, Li TC, Lin WY, Huang KC, Chen CY, et al: Epidemiology of sarcopenia among community-dwelling older adults in Taiwan: A pooled analysis for a broader adoption of sarcopenia assessments. Geriatr Gerontol Int. 14:(Suppl 1). S52–S60. 2014. View Article : Google Scholar | |
Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, et al: Tracking pathophysiological processes in Alzheimer's disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12:207–216. 2013. View Article : Google Scholar : PubMed/NCBI | |
Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff P, et al: Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: A prospective cohort study. Lancet Neurol. 12:357–67. 2013. View Article : Google Scholar : PubMed/NCBI | |
Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH and Taylor JO: Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. JAMA. 262:2551–2556. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hy LX and Keller DM: Prevalence of AD among whites: A summary by levels of severity. Neurology. 55:198–204. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jack CR Jr, Wiste HJ, Weigand SD, Knopman DS, Vemuri P, Mielke MM, Lowe V, Senjem ML, Gunter JL, Machulda MM, et al: Age, sex, and APOE ε4 effects on memory, brain structure, and β-amyloid across the adult life span. JAMA Neurol. 72:511–519. 2015. View Article : Google Scholar : PubMed/NCBI | |
Coffey CE, Lucke JF, Saxton JA, Ratcliff G, Unitas LJ, Billig B and Bryan RN: Sex differences in brain aging: A quantitative magnetic resonance imaging study. Arch Neurol. 55:169–179. 1998. View Article : Google Scholar : PubMed/NCBI | |
Murphy DG, DeCarli C, McIntosh AR, Daly E, Mentis MJ, Pietrini P, Szczepanik J, Schapiro MB, Grady CL, Horwitz B and Rapoport SI: Sex differences in human brain morphometry and metabolism: An in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry. 53:585–594. 1996. View Article : Google Scholar : PubMed/NCBI | |
Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, Loken WJ, Thornton AE and Acker JD: Selective aging of the human cerebral cortex observed in vivo: Differential vulnerability of the prefrontalgray matter. Cereb Cortex. 7:268–282. 1997. View Article : Google Scholar : PubMed/NCBI | |
Pruessner JC, Collins DL, Pruessner M and Evans AC: Age and gender predict volume decline in the anterior and posterior hippocampus in early adulthood. J Neurosci. 21:194–200. 2001.PubMed/NCBI | |
Bouix S, Pruessner JC, Collins D Louis and Siddiqi K: Hippocampal shape analysis using medial surfaces. Neuroimage. 25:1077–1089. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kokmen E, Beard CM, O'Brien PC and Kurland LT: Epidemiology of dementia in Rochester, Minnesota. Mayo Clin Proc. 71:275–282. 1996. View Article : Google Scholar : PubMed/NCBI | |
Nitrini R, Caramelli P, Herrera E Jr, Bahia VS, Caixeta LF, Radanovic M, Anghinah R, Charchat-Fichman H, Porto CS, Carthery MT, et al: Incidence of dementia in a community-dwelling Brazilian population. Alzheimer Dis Assoc Disord. 18:241–246. 2004.PubMed/NCBI | |
Edland SD, Rocca WA, Petersen RC, Cha RH and Kokmen E: Dementia and Alzheimer disease incidence rates do not vary by sex in Rochester, Minn. Arch Neurol. 59:1589–1593. 2002. View Article : Google Scholar : PubMed/NCBI | |
Katz MJ, Lipton RB, Hall CB, Zimmerman ME, Sanders AE, Verghese J, Dickson DW and Derby CA: Age-specific and sex-specific prevalence and incidence of mild cognitive impairment, dementia, and Alzheimer dementia in blacks and whites: A report from the einstein aging study. Alzheimer Dis Assoc Disord. 26:335–343. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ruitenberg A, Ott A, van Swieten JC, Hofman A and Breteler MM: Incidence of dementia: Does gender make a difference? Neurobiol Aging. 22:575–580. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vest RS and Pike CJ: Gender, sex steroid hormones, and Alzheimer's disease. Horm Behav. 63:301–307. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ruan Q, Yu Z, Chen M, Bao Z, Li J and He W: Cognitive frailty, a novel target for the prevention of elderly dependency. Ageing Res Rev. 20:1–10. 2015. View Article : Google Scholar : PubMed/NCBI | |
Panza F, Solfrizzi V, Barulli MR, Santamato A, Seripa D, Pilotto A and Logroscino G: Cognitive Frailty: A systematic review of epidemiological and neurobiological evidence of an age-related clinical condition. Rejuvenation Res. 18:389–412. 2015. View Article : Google Scholar : PubMed/NCBI | |
Clegg A, Young J, Iliffe S, Rikkert MO and Rockwood K: Frailty in elderly people. Lancet. 381:752–762. 2013. View Article : Google Scholar : PubMed/NCBI | |
Halil M, Kizilarslanoglu M Cemal, Kuyumcu M Emin, Yesil Y and Jentoft AJ Cruz: Cognitive aspects of frailty: Mechanisms behind the link between frailty and cognitive impairment. J Nutr Health Aging. 9:276–283. 2015. View Article : Google Scholar | |
Chahal HS and Drake WM: The endocrine system and ageing. J Pathol. 211:173–180. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lamberts SW, van den Beld AW and van der Lely AJ: The endocrinology of aging. Science. 278:419–424. 1997. View Article : Google Scholar : PubMed/NCBI | |
Jian J, Pelle E and Huang X: Iron and menopause: Does increased iron affect the health of postmenopausal women? Antioxid Redox Signal. 11:2939–2943. 2009. View Article : Google Scholar : PubMed/NCBI | |
Goodman-Gruen D and Barrett-Connor E: Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care. 23:912–918. 2000. View Article : Google Scholar : PubMed/NCBI | |
Militello A, Vitello G, Lunetta C, Toscano A, Maiorana G, Piccoli T and La Bella V: The serum level of free testosterone is reduced in amyotrophic lateral sclerosis. J Neurol Sci. 195:67–70. 2002. View Article : Google Scholar : PubMed/NCBI | |
Paoletti AM, Congia S, Lello S, Tedde D, Orrù M, Pistis M, Pilloni M, Zedda P, Loddo A and Melis GB: Low androgenization index in elderly women and elderly men with Alzheimer's disease. Neurology. 62:301–303. 2004. View Article : Google Scholar : PubMed/NCBI | |
Longcope C: Androgen metabolism and the menopause. Semin Reprod Endocrinol. 16:111–115. 1998. View Article : Google Scholar : PubMed/NCBI | |
Rosario ER, Chang L, Head EH, Stanczyk FZ and Pike CJ: Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer's disease. Neurobiol Aging. 32:604–613. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ferrini RL and Barrett-Connor E: Sex hormones and age: A cross-sectional study of testosterone and estradiol and their bioavailable fractions in community-dwelling men. Am J Epidemiol. 147:750–754. 1998. View Article : Google Scholar : PubMed/NCBI | |
Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR, et al: Baltimore Longitudinal Study of Aging: Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore longitudinal study of aging. J Clin Endocrinol Metab. 86:724–731. 2001. View Article : Google Scholar : PubMed/NCBI | |
Samaras N, Samaras D, Lang PO, Forster A, Pichard C, Frangos E and Meyer P: A view of geriatrics through hormones. What is the relation between andropause and well-known geriatric syndromes? Maturitas. 74:213–219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morley JE and Malmstrom TK: Frailty, sarcopenia, and hormones. Endocrinol Metab Clin North Am. 42:391–405. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mohr BA, Bhasin S, Kupelian V, Araujo AB, O'Donnell AB and McKinlay JB: Testosterone, sex hormone-binding globulin, and frailty in older men. J Am Geriatr Soc. 55:548–555. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cappola AR, Xue QL and Fried LP: Multiple hormonal deficiencies in anabolic hormones are found in frail older women: The women's health and aging studies. J Gerontol A Biol Sci Med Sci. 64:243–248. 2009. View Article : Google Scholar : PubMed/NCBI | |
Morley JE, Kaiser F, Raum WJ, Perry HM III, Flood JF, Jensen J, Silver AJ and Roberts E: Potentially predictive and manipulable blood serum correlates of aging in the healthy human male: Progressive decreases in bioavailable testosterone, dehydroepiandrosterone sulfate, and the ratio of insulin-like growth factor 1 to growth hormone. Proc Natl Acad Sci USA. 94:7537–7542. 1997. View Article : Google Scholar : PubMed/NCBI | |
Cawthon PM, Ensrud KE, Laughlin GA, Cauley JA, Dam TT, Barrett-Conno E, Fink HA, Hoffman AR, Lau E, Lane NE, et al: Sex hormones and frailty in older men: The osteoporotic fractures in men (MrOS) study. J Clin Endocrinol Metab. 94:3806–3815. 2009. View Article : Google Scholar : PubMed/NCBI | |
Auyeung TW, Lee JS, Kwok T, Leung J, Ohlsson C, Vandenput L, Leung PC and Woo J: Testosterone but not estradiol level is positively related to muscle strength and physical performance independent of muscle mass: A cross-sectional study in 1489 older men. Eur J Endocrinol. 164:811–817. 2011. View Article : Google Scholar : PubMed/NCBI | |
Travison TG, Nguyen AH, Naganathan V, Stanaway FF, Blyth FM, Cumming RG, Le Couteur DG, Sambrook PN and Handelsman DJ: Changes in reproductive hormone concentrations predict the prevalence and progression of the frailty syndrome in older men: The concord health and ageing in men project. J Clin Endocrinol Metab. 96:2464–2474. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carcaillon L, Blanco C, Alonso-Bouzón C, Alfaro-Acha A, Garcia-García FJ and Rodriguez-Mañas L: Sex differences in the association between serum levels of testosterone and frailty in an elderly population: The toledo study for healthy aging. PLoS One. 7:e324012012. View Article : Google Scholar : PubMed/NCBI | |
Pilz KS, Konar Y, Vuong QC, Bennett PJ and Sekuler AB: Age-related changes in matching novel objects across viewpoints. Vision Res. 51:1958–1965. 2011. View Article : Google Scholar : PubMed/NCBI | |
Neufang S, Specht K, Hausmann M, Güntürkün O, Herpertz-Dahlmann B, Fink GR and Konrad K: Sex differences and the impact of steroid hormones on the developing human brain. Cereb Cortex. 19:464–473. 2009. View Article : Google Scholar : PubMed/NCBI | |
Manly JJ, Merchant CA, Jacobs DM, Small SA, Bell K, Ferin M and Mayeux R: Endogenous estrogen levels and Alzheimer's disease among postmenopausal women. Neurology. 54:833–837. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yue X, Lu M, Lancaster T, Cao P, Honda S, Staufenbiel M, Harada N, Zhong Z, Shen Y and Li R: Brain estrogen deficiency accelerates Abeta b plaque formation in an Alzheimer's disease animal model. Proc Natl Acad Sci USA. 102:19198–19203. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rapp PR, Morrison JH and Roberts JA: Cyclic estrogen replacement improves cognitive function in aged ovariectomized rhesus monkeys. J Neurosci. 23:5708–5714. 2003.PubMed/NCBI | |
Kesler SR, Garrett A, Bender B, Yankowitz J, Zeng SM and Reiss AL: Amygdala and hippocampal volumes in turner syndrome: A high-resolution MRI study of X-monosomy. Neuropsychologia. 42:1971–1978. 2004. View Article : Google Scholar : PubMed/NCBI | |
Craig MC, Maki PM and Murphy DG: The women's health initiative memory study: Findings and implications for treatment. Lancet Neurol. 4:190–194. 2005. View Article : Google Scholar : PubMed/NCBI | |
Moffat SD, Zonderman AB, Metter EJ, Kawas C, Blackman MR, Harman SM and Resnick SM: Free testosterone and risk for Alzheimer disease in older men. Neurology. 62:188–193. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hogervorst E, Combrinck M and Smith AD: Testosterone and gonadotropin levels in men with dementia. Neuro Endocrinol Lett. 24:203–208. 2003.PubMed/NCBI | |
Moffat SD, Zonderman AB, Metter EJ, Blackman MR, Harman SM and Resnick SM: Longitudinal assessment of serum free testosterone concentration predicts memory performance and cognitive status in elderly men. J Clin Endocrinol Metab. 87:5001–5007. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rosario ER, Carroll J and Pike CJ: Testosterone regulation of Alzheimer-like neuropathology in male 3xTg-AD mice involves both estrogen and androgen pathways. Brain Res. 1359:281–290. 2010. View Article : Google Scholar : PubMed/NCBI | |
Emmelot-Vonk MH, Verhaar HJ, Pour HR Nakhai, Aleman A, Lock TM, Bosch JL, Grobbee DE and van der Schouw YT: Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: A randomized controlled trial. JAMA. 299:39–52. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ebner NC, Kamin H, Diaz V, Cohen RA and MacDonald K: Hormones as ‘difference makers’ in cognitive and socioemotional aging processes. Front Psychol. 5:15952015. View Article : Google Scholar : PubMed/NCBI | |
Giefing-Kröll C, Berger P, Lepperdinger G and Grubeck-Loebenstein B: How sex and age affect immune responses, susceptibility to infections, and response tovaccination. Aging Cell. 14:309–321. 2015. View Article : Google Scholar : PubMed/NCBI | |
Candore G, Balistreri CR, Colonna-Romano G, Lio D, Listì F, Vasto S and Caruso C: Gender-related immune-inflammatory factors, age-related diseases, and longevity. Rejuvenation Res. 13:292–297. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vrachnis N, Zygouris D, Iliodromiti Z, Daniilidis A, Valsamakis G and Kalantaridou S: Probing the impact of sex steroids and menopause-related sex steroid deprivation on modulation of immune senescence. Maturitas. 78:174–178. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G and Cai D: Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature. 497:211–216. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P and Grubeck-Loebenstein B: How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: The role of microglia and astrocytes. Aging Cell. 3:169–176. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schaap LA, Pluijm SM, Deeg DJ and Visser M: Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 119:526.e9–17. 2006. View Article : Google Scholar | |
Fulop T, Larbi A, Witkowski JM, McElhaney J, Loeb M, Mitnitski A and Pawelec G: Aging, frailty and age-related diseases. Biogerontology. 11:547–563. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ruan Q, Qian F and Yu Z: Effects of polymorphisms in immunity-related genes on the immune system and successful aging. Curr Opin Immunol. 29:49–55. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lane JM, Serota AC and Raphael B: Osteoporosis: Differences and similarities in male and female patients. Orthop Clin North Am. 37:601–609. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kalyani RR, Corriere M and Ferrucci L: Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2:819–829. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S and Coxam V: Muscle and bone, two interconnected tissues. Ageing Res Rev. 21:55–70. 2015. View Article : Google Scholar : PubMed/NCBI | |
Viña J and Lloret A: Why women have more Alzheimer's disease than men: Gender and mitochondrial toxicity of amyloid-beta peptide. J Alzheimers Dis. 20:(Suppl 2). S527–S533. 2010. View Article : Google Scholar : PubMed/NCBI | |
Roberts RO, Geda YE, Knopman DS, Cha RH, Pankratz VS, Boeve BF, Tangalos EG, Ivnik RJ, Mielke MM and Petersen RC: Cardiac disease associated with increased risk of nonamnestic cognitive impairment: Stronger effect on women. JAMA Neurol. 70:374–382. 2013. View Article : Google Scholar : PubMed/NCBI | |
Roberts RO, Knopman DS, Geda YE, Cha RH, Pankratz VS, Baertlein L, Boeve BF, Tangalos EG, Ivnik RJ, Mielke MM and Petersen RC: Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement. 10:18–26. 2014. View Article : Google Scholar : PubMed/NCBI | |
Richard E, Reitz C, Honig LH, Schupf N, Tang MX, Manly JJ, Mayeux R, Devanand D and Luchsinger JA: Late-life depression, mild cognitive impairment, and dementia. JAMA Neurol. 70:374–382. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nourhashémi F, Andrieu S, Gillette-Guyonnet S, Reynish E, Albarède JL, Grandjean H and Vellas B: Is there a relationship between fat-free soft tissue mass and low cognitive function? Results from a study of 7,105 women. J Am Geriatr Soc. 50:1796–1801. 2002. View Article : Google Scholar : PubMed/NCBI | |
Auyeung TW, Lee JS, Kwok T and Woo J: Physical frailty predicts future cognitive decline-a four-year prospective study in 2737 cognitively normal older adults. J Nutr Health Aging. 15:690–694. 2011. View Article : Google Scholar : PubMed/NCBI | |
Burns JM, Johnson DK, Watts A, Swerdlow RH and Brooks WM: Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol. 67:428–433. 2010. View Article : Google Scholar : PubMed/NCBI | |
de la Monte SM: Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer's disease. Drugs. 72:49–66. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kalyani RR, Varadhan R, Weiss CO, Fried LP and Cappola AR: Frailty status and altered glucose-insulin dynamics. J Gerontol A Biol Sci Med Sci. 67:1300–1306. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gould E, Woolley CS, Frankfurt M and McEwen BS: Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci. 10:1286–1291. 1990.PubMed/NCBI | |
Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, Rapp PR and Morrison JH: Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci. 30:7507–7515. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pereira AC, Lambert HK, Grossman YS, Dumitriu D, Waldman R, Jannetty SK, Calakos K, Janssen WG, McEwen BS and Morrison JH: Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering. Proc Natl Acad Sci USA. 111:18733–18738. 2014. View Article : Google Scholar : PubMed/NCBI | |
Galea LA, Wainwright SR, Roes MM, Duarte-Guterman P, Chow C and Hamson DK: Sex, hormones, and neurogenesis in the hippocampus: Hormonal modulation of neurogenesis and potential functional implications. J Neuroendocrinol. 25:1039–1061. 2013. View Article : Google Scholar : PubMed/NCBI | |
Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA and McEwen BS: Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol. 29:219–237. 2008. View Article : Google Scholar : PubMed/NCBI | |
Long J, He P, Shen Y and Li R: New evidence of mitochondria dysfunction in the female Alzheimer's disease brain: Deficiency of estrogen receptor-β. J Alzheimers Dis. 30:545–558. 2012.PubMed/NCBI | |
Ottowitz WE, Siedlecki KL, Lindquist MA, Dougherty DD, Fischman AJ and Hall JE: Evaluation of prefrontal-hippocampal effective connectivity following 24 hours of estrogen infusion: An FDG-PET study. Psychoneuroendocrinology. 33:1419–1425. 2008. View Article : Google Scholar : PubMed/NCBI | |
Waters EM, Yildirim M, Janssen WG, Lou WY, McEwen BS, Morrison JH and Milner TA: Estrogen and aging affect the synaptic distribution of estrogen receptor β-immunoreactivity in the CA1 region of female rat hippocampus. Brain Res. 1379:86–97. 2011. View Article : Google Scholar : PubMed/NCBI | |
Petanceska SS, Nagy V, Frail D and Gandy S: Ovariectomy and 17beta-estradiol modulate the levels of Alzheimer's amyloid beta peptides in brain. Neurology. 54:2212–2217. 2000. View Article : Google Scholar : PubMed/NCBI | |
Anastasio TJ: Exploring the contribution of estrogen to amyloid-beta regulation: A novel multifactorial computational modeling approach. Front Pharmacol. 4:162013. View Article : Google Scholar : PubMed/NCBI | |
Zhang QG, Wang R, Khan M, Mahesh V and Brann DW: Role of Dickkopf-1, an antagonist of the Wnt/beta-catenin signaling pathway, in estrogen-induced neuroprotection and attenuation of tau phosphorylatio. J Neurosci. 28:8430–8441. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pike CJ: Estrogen modulates neuronal Bcl-xL expression and beta-amyloidinduced apoptosis: Relevance to Alzheimer's disease. J Neurochem. 72:1552–1563. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jung JI, Ladd TB, Kukar T, Price AR, Moore BD, Koo EH, Golde TE and Felsenstein KM: Steroids as γ-secretase modulators. FASEB J. 27:3775–3785. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jayaraman A, Carroll JC, Morgan TE, Lin S, Zhao L, Arimoto JM, Murphy MP, Beckett TL, Finch CE, Brinton RD and Pike CJ: 17β-estradiol and progesterone regulate expression of β-amyloid clearance factors in primary neuron cultures and female rat brain. Endocrinology. 153:5467–5479. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sherwin BB and Tulandi T: ‘Add-back’ estrogen reverses cognitive deficits induced by a gonadotropin-releasing hormone agonist in women with leiomyomata uteri. J Clin Endocrinol Metab. 81:2545–2549. 1996. View Article : Google Scholar : PubMed/NCBI | |
Holland J, Bandelow S and Hogervorst E: Testosterone levels and cognition in elderly men: A review. Maturitas. 69:322–337. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gouras GK, Xu H, Gross RS, Greenfield JP, Hai B, Wang R and Greengard P: Testosterone reduces neuronal secretion of Alzheimer's beta-amyloid peptides. Proc Natl Acad Sci USA. 97:1202–1205. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lau CF, Ho YS, Hung CH, Uwongse S, Poon CH, Chiu K, Yang X, Chu LW and Chang RC: Protective effects of testosterone on presynaptic terminals against oligomeric β-amyloid peptide in primary culture of hippocampal neurons. Biomed Res Int. 2014:1039062014. View Article : Google Scholar : PubMed/NCBI | |
Maggio M, Dall'Aglio E, Lauretani F, Cattabiani C, Ceresini G, Caffarra P, Valenti G, Volpi R, Vignali A, Schiavi G and Ceda GP: The hormonal pathway to cognitive impairment in older men. J Nutr Health Aging. 16:40–54. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nguyen TV, Jayaraman A, Quaglino A and Pike CJ: Androgens selectively protect against apoptosis in hippocampal neurones. J Neuroendocrinol. 22:1013–1022. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pike CJ: Testosterone attenuates beta-amyloid toxicity in cultured hippocampal neurons. Brain Res. 919:160–165. 2001. View Article : Google Scholar : PubMed/NCBI | |
Medway C, Combarros O, Cortina-Borja M, Butler HT, Ibrahim-Verbaas CA, de Bruijn RF, Koudstaal PJ, van Duijn CM, Ikram MA, Mateo I, et al: The sex-specific associations of the aromatase gene with Alzheimer's disease and its interaction with IL10 in the epistasis project. Eur J Hum Genet. 22:216–220. 2014. View Article : Google Scholar : PubMed/NCBI | |
Holland D, Desikan RS, Dale AM, McEvoy LK, et al: Alzheimer's Disease Neuroimaging Initiative: Higher rates of decline for women and apolipoprotein E epsilon4 carriers. AJNR Am J Neuroradiol. 34:2287–2293. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM and Mintun MA: APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol. 67:122–131. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pietrzak RH, Lim YY, Ames D, Harrington K, Restrepo C, Martins RN, Rembach A, Laws SM, Masters CL, Villemagne VL, et al: Trajectories of memory decline in preclinical Alzheimer's disease: Results from the Australian imaging, biomarkers and lifestyle flagship study of ageing. Neurobiol Aging. 36:1231–1238. 2015. View Article : Google Scholar : PubMed/NCBI | |
Morris JC, Roe CM, Grant EA, Head D, Storandt M, Goate AM, Fagan AM, Holtzman DM and Mintun MA: Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol. 66:1469–1475. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fleisher A, Grundman M, Jack CR Jr, Petersen RC, Taylor C, Kim HT, Schiller DH, Bagwell V, Sencakova D, Weiner MF, et al: Sex, apolipoprotein E epsilon 4 status, and hippocampal volume in mild cognitive impairment. Arch Neurol. 62:953–957. 2005. View Article : Google Scholar : PubMed/NCBI | |
Beydoun MA, Beydoun HA, Kaufman JS, An Y, Resnick SM, O'Brien R, Ferrucci L and Zonderman AB: Apolipoprotein E ε4 allele interacts with sex and cognitive status to influence all-cause and cause-specific mortality in US older adults. J Am Geriatr Soc. 61:525–534. 2013. View Article : Google Scholar : PubMed/NCBI | |
Payami H, Zareparsi S, Montee KR, Sexton GJ, Kaye JA, Bird TD, Yu CE, Wijsman EM, Heston LL, Litt M and Schellenberg GD: Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: A possible clue to the higherincidence of Alzheimer disease in women. Am J Hum Genet. 58:803–811. 1996.PubMed/NCBI | |
Protas HD, Chen K, Langbaum JB, Fleisher AS, Alexander GE, Lee W, Bandy D, de Leon MJ, Mosconi L, Buckley S, et al: Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol. 70:320–325. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stone DJ, Rozovsky I, Morgan TE, Anderson CP and Finch CE: Increased synaptic sprouting in response to estrogen via an apolipoprotein E-dependent mechanism: Implications for Alzheimer's disease. J Neurosci. 18:3180–3185. 1998.PubMed/NCBI | |
Zou F, Gopalraj RK, Lok J, Zhu H, Ling IF, Simpson JF, Tucker HM, Kelly JF, Younkin SG, Dickson DW, et al: Sex-dependent association of a common low-density lipoprotein receptor polymorphism with RNA splicing efficiency in the brain and Alzheimer's disease. Hum Mol Genet. 17:929–935. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cagliani R, Guerini FR, Rubio-Acero R, Baglio F, Forni D, Agliardi C, Griffanti L, Fumagalli M, Pozzoli U, Riva S, et al: Long-standing balancing selection in the THBS4 gene: Influence on sex-specific brain expression and gray matter volumes in Alzheimer disease. Hum Mutat. 34:743–753. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reynolds CA, Zavala C, Gatz M, Vie L, Johansson B, Malmberg B, Ingelsson E, Prince JA and Pedersen NL: Sortilin receptor 1 predicts longitudinal cognitive change. Neurobiol Aging. 34:1710.e11–e18. 2013. View Article : Google Scholar | |
Sundar PD, Feingold E, Minster RL, DeKosky ST and Kamboh MI: Gender-specific association of ATP-binding cassette transporter 1 (ABCA1) polymorphisms with the riskof late-onset Alzheimer's disease. Neurobiol Aging. 28:856–862. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kaminsky Z, Wang SC and Petronis A: Complex disease, gender and epigenetics. Ann Med. 38:530–544. 2006. View Article : Google Scholar : PubMed/NCBI | |
Laughlin GA and Barrett-Connor E: Sexual dimorphism in the influence of advanced aging on adrenal hormone levels: The rancho bernardo study. J Clin Endocrinol Metab. 85:3561–3568. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nater UM, Hoppmann CA and Scott SB: Diurnal profiles of salivary cortisol and alpha-amylase change across the adult lifespan: Evidence from repeated daily life assessments. Psychoneuroendocrinology. 38:3167–3171. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yen SS and Laughlin GA: Aging and the adrenal cortex. Exp Gerontol. 33:897–910. 1998. View Article : Google Scholar : PubMed/NCBI | |
Heaney JL, Phillips AC and Carroll D: Ageing, depression, anxiety, social support and the diurnal rhythm and awakening response of salivary cortisol. Int J Psychophysiol. 78:201–208. 2010. View Article : Google Scholar : PubMed/NCBI | |
Burke HM, Davis MC, Otte C and Mohr DC: Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology. 30:846–856. 2005. View Article : Google Scholar : PubMed/NCBI | |
Orentreich N, Brind JL, Rizer RL and Vogelman JH: Age changes and sex differences in serum dehydroepiandrosterone sulfateconcentrations throughout adulthood. J Clin Endocrinol Metab. 59:551–555. 1984. View Article : Google Scholar : PubMed/NCBI | |
Vermeulen A: Dehydroepiandrosterone sulfate and aging. Ann NY Acad Sci. 774:121–127. 1995. View Article : Google Scholar : PubMed/NCBI | |
Parker CR Jr, Mixon RL, Brissie RM and Grizzle WE: Aging alters zonation in the adrenal cortex of men. J Clin Endocrinol Metab. 82:3898–3901. 1997. View Article : Google Scholar : PubMed/NCBI | |
Varadhan R, Walston J, Cappola AR, Carlson MC, Wand GS and Fried LP: Higher levels and blunted diurnal variation of cortisol in frail older women. J Gerontol A Biol Sci Med Sci. 63:190–195. 2008. View Article : Google Scholar : PubMed/NCBI | |
Holanda CM, Guerra RO, Nóbrega PV, Costa HF, Piuvezam MR and Maciel ÁC: Salivary cortisol and frailty syndrome in elderly residents of long-stay institutions: Across-sectional study. Arch Gerontol Geriatr. 54:e146–e151. 2012. View Article : Google Scholar : PubMed/NCBI | |
Waters DL, Qualls CR, Dorin RI, Veldhuis JD and Baumgartner RN: Altered growth hormone, cortisol, and leptin secretion in healthy elderly persons with sarcopenia and mixed body composition phenotypes. J Gerontol A Biol Sci Med Sci. 63:536–541. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schakman O, Gilson H and Thissen JP: Mechanisms of glucocorticoid-induced myopathy. J Endocrinol. 197:1–10. 2008. View Article : Google Scholar : PubMed/NCBI | |
Attaix D, Mosoni L, Dardevet D, Combaret L, Mirand PP and Grizard J: Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods. Int J Biochem Cell Biol. 37:1962–1973. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gupta A and Gupta Y: Glucocorticoid-induced myopathy: Pathophysiology, diagnosis, and treatment. Indian J Endocrinol Metab. 17:913–916. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leng SX, Cappola AR, Andersen RE, Blackman MR, Koenig K, Blair M and Walston JD: Serum levels of insulin-like growth factor-I (IGF-I) and dehydroepiandrosterone sulfate (DHEA-S), and their relationships with serum interleukin-6, in the geriatric syndrome of frailty. Aging Clin Exp Res. 16:153–157. 2004. View Article : Google Scholar : PubMed/NCBI | |
Puts MT, Visser M, Twisk JW, Deeg DJ and Lips P: Endocrine and inflammatory markers as predictors of frailty. Clin Endocrinol (Oxf). 63:403–411. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gupta D and Morley JE: Hypothalamic-pituitary-adrenal (HPA) axis and aging. Compr Physiol. 4:1495–1510. 2014. View Article : Google Scholar : PubMed/NCBI | |
Giunta S: Exploring the complex relations between inflammation and aging (inflamm-aging): Anti-inflamm-aging remodelling of inflamm-aging, from robustness to frailty. Inflamm Res. 57:558–563. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ohlsson C, Labrie F, Barrett-Connor E, Karlsson MK, Ljunggren O, Vandenput L, Mellström D and Tivesten A: Low serum levels of dehydroepiandrosterone sulfate predict all-cause and cardiovascular mortality in elderly Swedish men. J Clin Endocrinol Metab. 95:4406–4414. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cappola AR, Xue QL, Walston JD, Leng SX, Ferrucci L, Guralnik J and Fried LP: DHEAS levels and mortality in disabled older women: The women's health and aging study I. J Gerontol A Biol Sci Med Sci. 61:957–962. 2006. View Article : Google Scholar : PubMed/NCBI | |
Voznesensky M, Walsh S, Dauser D, Brindisi J and Kenny AM: The association between dehydroepiandosterone and frailty in older men and women. Age Ageing. 38:401–416. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sanders JL, Cappola AR, Arnold AM, Boudreau RM, Chaves PH, Robbins J, Cushman M and Newman AB: Concurrent change in dehydroepiandrosterone sulfate and functional performance in the oldest old: Results from the cardiovascular health study all stars study. J Gerontol A Biol Sci Med Sci. 65:976–981. 2010. View Article : Google Scholar : PubMed/NCBI | |
Carvalhaes-Neto N, Huayllas MK, Ramos LR, Cendoroglo MS and Kater CE: Cortisol, DHEAS and aging: Resistance to cortisol suppression in frail institutionalized elderly. J Endocrinol Invest. 26:17–22. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee BK, Glass TA, McAtee MJ, Wand GS, Bandeen-Roche K, Bolla KI and Schwartz BS: Associations of salivary cortisol with cognitive function in the Baltimore memory study. Arch Gen Psychiatry. 64:810–818. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang CW, Lui CC, Chang WN, Lu CH, Wang YL and Chang CC: Elevated basal cortisol level predicts lower hippocampal volume and cognitive decline in Alzheimer's disease. J Clin Neurosci. 16:1283–1286. 2009. View Article : Google Scholar : PubMed/NCBI | |
Seeman TE, McEwen BS, Singer BH, Albert MS and Rowe JW: Increase in urinary cortisol excretion and memory declines: MacArthur studies of successful aging. J Clin Endocrinol Metab. 82:2458–2465. 1997. View Article : Google Scholar : PubMed/NCBI | |
Comijs HC, Gerritsen L, Penninx BW, Bremmer MA, Deeg DJ and Geerlings MI: The association between serum cortisol and cognative decline in older persons. Am J Geriatr Psychiatry. 18:42–50. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wolf OT, Schommer NC, Hellhammer DH, McEwen BS and Kirschbaum C: The relationship between stress induced cortisol levels and memory differs between men and women. Psychoneuroendocrinology. 26:711–720. 2001. View Article : Google Scholar : PubMed/NCBI | |
Eichenbaum H: Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron. 44:109–120. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zacharski LR, Ornstein DL, Woloshin S and Schwartz LM: Association of age, sex, and racewith body iron stores in adults: Analysis of NHANES III data. Am Heart J. 140:98–104. 2000. View Article : Google Scholar : PubMed/NCBI | |
Milman N: Serum ferritin in Danes: Studies of iron status from infancy to old age, during blood donation and pregnancy. Int J Hematol. 63:103–135. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sullivan JL: Iron and the sex difference in heart disease risk. Lancet. 1:1293–1294. 1981. View Article : Google Scholar : PubMed/NCBI | |
Sullivan JL: Are menstruating women protected from heart disease because of, or in spite of, estrogen? Relevance to the iron hypothesis. Am Heart J. 145:190–194. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zacharski LR, Chow BK, Howes PS, Shamayeva G, Baron JA, Dalman RL, Malenka DJ, Ozaki CK and Lavori PW: Reduction of iron stores and cardiovascular outcomes in patients with peripheral arterial disease: A randomized controlled trial. JAMA. 297:603–610. 2007. View Article : Google Scholar : PubMed/NCBI | |
Milman N and Kirchhoff M: Iron stores in 1359, 30- to 60-year-old Danish women: Evaluation by serum ferritin and hemoglobin. Ann Hematol. 64:22–27. 1992. View Article : Google Scholar : PubMed/NCBI | |
Raman SV, Sharkey-Toppen TP, Tran T, Liu JX, McCarthy B, He X, Smart S, Gulati M, Wexler R, Simonetti OP and Jackson RD: Iron, inflammation and atherosclerosis risk in men vs. perimenopausal women. Atherosclerosis. 241:249–254. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bartzokis G, Tishler TA, Lu PH, Villablanca P, Altshuler LL, Carter M, Huang D, Edwards N and Mintz J: Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging. 28:414–423. 2007. View Article : Google Scholar : PubMed/NCBI | |
Artz AS: Anemia and the frail elderly. Semin Hematol. 45:261–266. 2008. View Article : Google Scholar : PubMed/NCBI | |
Duh MS, Latypova A and Greenberg P: Impact and treatment of anemia in the elderly: Clinical, epidemiological and economic perspectives. Expert Rev Pharmacoecon Outcomes Res. 6:577–590. 2006. View Article : Google Scholar : PubMed/NCBI | |
MacKenzie EL, Iwasaki K and Tsuji Y: Intracellular iron transport and storage: From molecular mechanisms to health implications. Antioxid Redox Signal. 10:997–1030. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Knutson MD, Carter CS and Leeuwenburgh C: Iron accumulation with age, oxidative stress and functional decline. PLoS One. 3:e28652008. View Article : Google Scholar : PubMed/NCBI | |
Sullivan JL: Is stored iron is safe ? J Lab Clin Med. 144:280–284. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bartzokis G, Lu PH, Tingus K, Peters DG, Amar CP, Tishler TA, Finn JP, Villablanca P, Altshuler LL, Mintz J, et al: Gender and iron genes may modify associations between brain iron and memory in healthy aging. Neuropsychopharmacology. 36:1375–1384. 2011. View Article : Google Scholar : PubMed/NCBI | |
Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW Jr, Cohen ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T, et al: Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis. 19:363–372. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kell DB: Iron behaving badly: Inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics. 2:22009. View Article : Google Scholar : PubMed/NCBI | |
Ayton S, Faux NG and Bush AI: Alzheimer's disease neuroimaging initiative: Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nat Commun. 6:67602015. View Article : Google Scholar : PubMed/NCBI | |
Berge LN, Bønaa KH and Nordøy A: Serum ferritin, sex hormones, and cardiovascular risk factors in healthy women. Arterioscler Thromb. 14:857–861. 1994. View Article : Google Scholar : PubMed/NCBI | |
Mascitelli L, Goldstein MR and Pezzetta F: Explaining sex difference in coronary heart disease: Is it time to shift from the oestrogen hypothesis to the ironhypothesis? J Cardiovasc Med (Hagerstown). 12:64–65. 2011. View Article : Google Scholar : PubMed/NCBI | |
Masse PG, Dosy J, Cole DE, Evroski J, Allard J and D'Astous M: Is serum ferritin an additional cardiovascular risk factor for all postmenopausal women? Ann Nutr Metab. 48:381–389. 2004. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Yin C, Chen Y, Zhang S, Jiang L, Wang F, Zhao M and Liu S: Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogenresponse element. Cell Signal. 27:934–942. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hou Y, Zhang S, Wang L, Li J, Qu G, He J, Rong H, Ji H and Liu S: Estrogen regulates iron homeostasis through governing hepatic hepcidin expression via an estrogen response element. Gene. 511:398–403. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Jian J, Katz S, Abramson SB and Huang X: 17β-Estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology. 153:3170–3178. 2012. View Article : Google Scholar : PubMed/NCBI |