1
|
Adams DL, Economides JR and Horton JC:
Contrasting effects of strabismic amblyopia on metabolic activity
in superficial and deep layers of striate cortex. J Neurophysiol.
113:3337–3344. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Louwagie CR, Diehl NN, Greenberg AE and
Mohney BG: Is the incidence of infantile esotropia declining?: A
population-based study from Olmsted County, Minnesota, 1965 to
1994. Arch Ophthalmol. 127:200–203. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Koc F, Erten Y and Yurdakul NS: Does
restoration of binocular vision make any difference in the quality
of life in adult strabismus. Br J Ophthalmol. 97:1425–1430. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Iordanous Y, Mao A and Makar I:
Preoperative factors affecting stereopsis after surgical alignment
of acquired partially accommodative esotropia. Strabismus.
23:151–158. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bi H, Zhang B, Tao X, Harwerth RS, Smith
EL 3rd and Chino YM: Neuronal responses in visual area V2 (V2) of
macaque monkeys with strabismic amblyopia. Cereb Cortex.
21:2033–2045. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Duan Y, Norcia AM, Yeatman JD and Mezer A:
The Structural properties of major white matter tracts in
strabismic amblyopia. Invest Ophthalmol Vis Sci. 56:5152–5160.
2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen VJ and Tarczy-Hornoch K: Functional
magnetic resonance imaging of binocular interactions in visual
cortex in strabismus. J Pediatr Ophthalmol Strabismus. 48:366–374.
2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ashburner J and Friston KJ: Voxel-based
morphometry-the methods. Neuroimage. 11:805–821. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shimoda K, Kimura M, Yokota M and Okubo Y:
Comparison of regional gray matter volume abnormalities in
Alzheimer's disease and late life depression with hippocampal
atrophy using VSRAD analysis: A voxel-based morphometry study.
Psychiatry Res. 232:71–75. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang X, Zhang Q, Hu PH, Zhong YL, Zhang
Y, Wei R, Xu TT, Shao Y, et al: Oculopathy fMRI study group: White
and gray matter volume changes and correlation with visual evoked
potential in patients with optic Neuritis: A voxel-based
morphometry study. Med Sci Monit. 22:1115–1123. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kim GW and Jeong GW: White matter volume
change and its correlation with symptom severity in patients with
schizophrenia: A VBM-DARTEL study. Neuroreport. 26:1095–1100.
2015.PubMed/NCBI
|
12
|
Chan ST, Tang KW, Lam KC, Chan LK, Mendola
JD and Kwong KK: Neuroanatomy of adult strabismus: A voxel-based
morphometric analysis of magnetic resonance structural scans.
Neuroimage. 22:986–994. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nguyenkim JD and DeAngelis GC:
Disparity-based coding of three-dimensional surface orientation by
macaque middle temporal neurons. J Neurosci. 23:7117–7128.
2003.PubMed/NCBI
|
14
|
Sanada TM, Nguyenkim JD and Deangelis GC:
Representation of 3-D surface orientation by velocity and disparity
gradient cues in area MT. J Neurophysiol. 107:2109–2122. 2012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Czuba TB, Huk AC, Cormack LK and Kohn A:
Area MT encodes three-dimensional motion. J Neurosci.
34:15522–15533. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Feng X, Zhang X and Jia Y: Improvement in
fusion and stereopsis following surgery for intermittent exotropia.
J Pediatr Ophthalmol Strabismus. 52:52–57. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yan X, Lin X, Wang Q, Zhang Y, Chen Y,
Song S and Jiang T: Dorsal visual pathway changes in patients with
comitant extropia. PLoS One. 5:e109312010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Duan Y, Norcia AM, Yeatman JD and Mezer A:
The structural properties of major white matter tracts in
strabismic amblyopia. Invest Ophthalmol Vis Sci. 56:5152–5160.
2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Herzfeld DJ, Kojima Y, Soetedjo R and
Shadmehr R: Encoding of action by the purkinje cells of the
cerebellum. Nature. 526:439–442. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nitschke MF, Arp T, Stavrou G, Erdmann C
and Heide W: The cerebellum in the cerebro-cerebellar network for
the control of eye and hand movements-an fMRI study. Prog Brain
Res. 148:151–164. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hayakawa Y, Nakajima T, Takagi M, Fukuhara
N and Abe H: Human cerebellar activation in relation to saccadic
eye movements: A functional magnetic resonance imaging study.
Ophthalmologica. 216:399–405. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Joshi AC and Das VE: Muscimol inactivation
of caudal fastigial nucleus and posterior interposed nucleus in
monkeys with strabismus. J Neurophysiol. 110:1882–1891. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Boussaoud D and Wise SP: Primate frontal
cortex: Neuronal activity following attentional versus intentional
cues. Exp Brain Res. 95:15–27. 1993. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shen L and Alexander GE: Neural correlates
of a spatial sensory-to-motor transformation in primary motor
cortex. J Neurophysiol. 77:1171–1194. 1997.PubMed/NCBI
|
25
|
Halsband U, Matsuzaka Y and Tanji J:
Neuronal activity in the primate supplementary, pre-supplementary
and premotor cortex during externally and internally instructed
sequential movements. Neurosci Res. 20:149–155. 1994. View Article : Google Scholar : PubMed/NCBI
|
26
|
Boussaoud D: Primate premotor cortex:
Modulation of preparatory neuronal activity by gaze angle. J
Neurophysiol. 73:886–890. 1995.PubMed/NCBI
|
27
|
Blanke O, Spinelli L, Thut G, Michel CM,
Perrig S, Landis T and Seeck M: Location of the human frontal eye
field as defined by electrical cortical stimulation: Anatomical,
functional and electrophysiological characteristics. Neuroreport.
11:1907–1913. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fernandes HL, Stevenson IH, Phillips AN,
Segraves MA and Kording KP: Saliency and saccade encoding in the
frontal eye field during natural scene search. Cereb Cortex.
24:3232–3245. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Esterman M, Liu G, Okabe H, Reagan A, Thai
M and DeGutis J: Frontal eye field involvement in sustaining visual
attention: Evidence from transcranial magnetic stimulation.
Neuroimage. 111:542–548. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cavanna AE and Trimble MR: The precuneus:
A review of its functional anatomy and behavioural correlates.
Brain. 129:564–583. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Oshio R, Tanaka S, Sadato N, Sokabe M,
Hanakawa T and Honda M: Differential effect of double-pulse TMS
applied to dorsal premotor cortex and precuneus during internal
operationof visuospatial information. Neuroimage. 49:1108–1115.
2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yang X, Zhang J, Lang L, Gong Q and Liu L:
Assessment of cortical dysfunction in infantile esotropia using
fMRI. Eur J Ophthalmol. 24:409–416. 2014. View Article : Google Scholar : PubMed/NCBI
|