Targeting strategies of adenovirus‑mediated gene therapy and virotherapy for prostate cancer (Review)
- Authors:
- Zhonglin Cai
- Haidi Lv
- Wenjuan Cao
- Chuan Zhou
- Qiangzhao Liu
- Hui Li
- Fenghai Zhou
-
Affiliations: Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China, Department of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China, Department of Neurosurgery, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China - Published online on: September 13, 2017 https://doi.org/10.3892/mmr.2017.7487
- Pages: 6443-6458
-
Copyright: © Cai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Nadeau I and Kamen A: Production of adenovirus vector for gene therapy. Biotechnol Adv. 20:475–489. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rowe WP, Huebner RJ, Gilmore LK, Parrott RH and Ward TG: Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med. 84:570–573. 1953; View Article : Google Scholar : PubMed/NCBI | |
Berkner KL: Development of adenovirus vectors for the expression of heterologous genes. Biotechniques. 6:616–629. 1988.PubMed/NCBI | |
Berkner KL: Expression of heterologous sequences in adenoviral vectors. Curr Top Microbiol Immunol. 158:39–66. 1992.PubMed/NCBI | |
Engelhardt JF, Ye X, Doranz B and Wilson JM: Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA. 91:6196–6200. 1994; View Article : Google Scholar : PubMed/NCBI | |
Hehir KM, Armentano D, Cardoza LM, Choquette TL, Berthelette PB, White GA, Couture LA, Everton MB, Keegan J, Martin JM, et al: Molecular characterization of replication-competent variants of adenovirus vectors and genome modifications to prevent their occurrence. J Virol. 70:8459–8467. 1996.PubMed/NCBI | |
Parks RJ and Graham FL: A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J Virol. 71:3293–3298. 1997.PubMed/NCBI | |
Sato M, Suzuki S, Kubo S and Mitani K: Replication and packaging of helper-dependent adenoviral vectors. Gene Ther. 9:472–476. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wilmott RW, Amin RS, Perez CR, Wert SE, Keller G, Boivin GP, Hirsch R, De Inocencio J, Lu P, Reising SF, et al: Safety of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator cDNA to the lungs of nonhuman primates. Hum Gene Ther. 7:301–318. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fukazawa T, Matsuoka J, Yamatsuji T, Maeda Y, Durbin ML and Naomoto Y: Adenovirus-mediated cancer gene therapy and virotherapy (Review). Int J Mol Med. 25:3–10. 2010.PubMed/NCBI | |
Bauerschmitz GJ, Barker SD and Hemminki A: Adenoviral gene therapy for cancer: From vectors to targeted and replication competent agents (Review). Int J Oncol. 21:1161–1174. 2002.PubMed/NCBI | |
Jounaidi Y, Doloff JC and Waxman DJ: Conditionally replicating adenoviruses for cancer treatment. Curr Cancer Drug Targets. 7:285–301. 2007. View Article : Google Scholar : PubMed/NCBI | |
Power AT and Bell JC: Taming the Trojan horse: Optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy. Gene Ther. 15:772–779. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Wang H, Chen X, Li C and Huang Q: Dissecting the roles of E1A and E1B in adenoviral replication and RCAd-enhanced RDAd transduction efficacy on tumor cells. Cancer Biol Ther. 15:1358–1366. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Kasala D, Na Y, Lee MS, Kim SW, Jeong JH and Yun CO: Enhanced therapeutic efficacy of an adenovirus-PEI-bile-acid complex in tumors with low coxsackie and adenovirus receptor expression. Biomaterials. 35:5505–5516. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, Hawkins L and Kirn D: An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med. 6:1134–1139. 2000. View Article : Google Scholar : PubMed/NCBI | |
Andriole GL, Crawford ED, Grubb RL III, Buys SS, Chia D, Church TR, Fouad MN, Gelmann EP, Kvale PA, Reding DJ, et al: Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 360:1310–1319. 2009. View Article : Google Scholar : PubMed/NCBI | |
Matsuyama H, Baba Y, Yamakawa G, Yamamoto N and Naito K: Diagnostic value of prostate-specific antigen-related parameters in discriminating prostate cancer. Int J Urol. 7:409–414. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ravery V and Boccon-Gibod L: Free/total prostate-specific antigen ratio-hope and controversies. Eur Urol. 31:385–388. 1997.PubMed/NCBI | |
Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, Kwiatkowski M, Lujan M, Lilja H, Zappa M, et al: Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 360:1320–1328. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yousef GM and Diamandis EP: The new human tissue kallikrein gene family: Structure, function, and association to disease. Endocr Rev. 22:184–204. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, DeWeese T, Dilley J, Zhang Y, Li Y, Ramesh N, Lee J, Pennathur-Das R, Radzyminski J, Wypych J, et al: CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res. 61:5453–5460. 2001.PubMed/NCBI | |
Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW and Henderson DR: Prostate attenuated replication competent adenovirus (ARCA) CN706: A selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57:2559–2563. 1997.PubMed/NCBI | |
DeWeese TL, Van Der Poel H, Li S, Mikhak B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez R, et al: A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 61:7464–7472. 2001.PubMed/NCBI | |
Wang L, Dong J, Wei M, Wen W, Gao J, Zhang Z and Qin W: Selective and augmented β-glucuronidase expression combined with DOX-GA3 application elicits the potent suppression of prostate cancer. Oncol Rep. 35:1417–1424. 2016. View Article : Google Scholar : PubMed/NCBI | |
Matuo Y, Nishi N, Negi T, Tanaka Y and Wada F: Isolation and characterization of androgen-dependent non-histone chromosomal protein from dorsolateral prostate of rats. Biochem Biophys Res Commun. 109:334–340. 1982. View Article : Google Scholar : PubMed/NCBI | |
Spence AM, Sheppard PC, Davie JR, Matuo Y, Nishi N, McKeehan WL, Dodd JG and Matusik RJ: Regulation of a bifunctional mRNA results in synthesis of secreted and nuclear probasin. Proc Natl Acad Sci USA. 86:7843–7847. 1989; View Article : Google Scholar : PubMed/NCBI | |
Greenberg NM, DeMayo FJ, Sheppard PC, Barrios R, Lebovitz R, Finegold M, Angelopoulou R, Dodd JG, Duckworth ML, Rosen JM, et al: The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol Endocrinol. 8:230–239. 1994. View Article : Google Scholar : PubMed/NCBI | |
Trujillo MA, Oneal MJ, McDonough S, Qin R and Morris JC: A probasin promoter, conditionally replicating adenovirus that expresses the sodium iodide symporter (NIS) for radiovirotherapy of prostate cancer. Gene Ther. 17:1325–1332. 2010. View Article : Google Scholar : PubMed/NCBI | |
Andriani F, Nan B, Yu J, Li X, Weigel NL, McPhaul MJ, Kasper S, Kagawa S, Fang B, Matusik RJ, et al: Use of the probasin promoter ARR2PB to express Bax in androgen receptor-positive prostate cancer cells. J Natl Cancer Inst. 93:1314–1324. 2001. View Article : Google Scholar : PubMed/NCBI | |
Eder M, Eisenhut M, Babich J and Haberkorn U: PSMA as a target for radiolabelled small molecules. Eur J Nucl Med Mol Imaging. 40:819–823. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heston WD: Significance of prostate-specific membrane antigen (PSMA). A neurocarboxypeptidase and membrane folate hydrolase. Urologe A. 35:400–407. 1996.(In German). View Article : Google Scholar : PubMed/NCBI | |
Minner S, Wittmer C, Graefen M, Salomon G, Steuber T, Haese A, Huland H, Bokemeyer C, Yekebas E, Dierlamm J, et al: High level PSMA expression is associated with early PSA recurrence in surgically treated prostate cancer. Prostate. 71:281–288. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rinker-Schaeffer CW, Hawkins AL, Su SL, Israeli RS, Griffin CA, Isaacs JT and Heston WD: Localization and physical mapping of the prostate-specific membrane antigen (PSM) gene to human chromosome 11. Genomics. 30:105–108. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ross JS, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K, Webb I, Gray GS, Mosher R and Kallakury BV: Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res. 9:6357–6362. 2003.PubMed/NCBI | |
Sweat SD, Pacelli A, Murphy GP and Bostwick DG: Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 52:637–640. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Guo Z, Du T, Chen J, Wang W, Xu K, Lin T and Huang H: Prostate specific membrane antigen (PSMA): A novel modulator of p38 for proliferation, migration, and survival in prostate cancer cells. Prostate. 73:835–841. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gao XF, Zhou T, Chen GH, Xu CL, Ding YL and Sun YH: Radioiodine therapy for castration-resistant prostate cancer following prostate-specific membrane antigen promoter-mediated transfer of the human sodium iodide symporter. Asian J Androl. 16:120–123. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zeng H, Wei Q, Huang R, Chen N, Dong Q, Yang Y and Zhou Q: Recombinant adenovirus mediated prostate-specific enzyme pro-drug gene therapy regulated by prostate-specific membrane antigen (PSMA) enhancer/promoter. J Androl. 28:827–835. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, Debruyne FM, Ru N and Isaacs WB: DD3: A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59:5975–5979. 1999.PubMed/NCBI | |
de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW, Swinkels DW and Schalken JA: DD3 (PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res. 62:2695–2698. 2002.PubMed/NCBI | |
Hessels D, Gunnewiek JM Klein, van Oort I, Karthaus HF, van Leenders GJ, van Balken B, Kiemeney LA, Witjes JA and Schalken JA: DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 44:8–16. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fan JK, Wei N, Ding M, Gu JF, Liu XR, Li BH, Qi R, Huang WD, Li YH, Xiong XQ, et al: Targeting Gene-ViroTherapy for prostate cancer by DD3-driven oncolytic virus-harboring interleukin-24 gene. Int J Cancer. 127:707–717. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mao LJ, Zheng JN, Li W, Wang JQ, Chen JC and Sun XQ: Construction of an oncolytic adenovirus expressing small hairpin RNA and targeting the SATB1 gene. Zhonghua Nan Ke Xue. 16:679–683. 2010.(In Chinese). PubMed/NCBI | |
Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S and Wright WE: Extension of life-span by introduction of telomerase into normal human cells. Science. 279:349–352. 1998. View Article : Google Scholar : PubMed/NCBI | |
Cong YS, Wen J and Bacchetti S: The human telomerase catalytic subunit hTERT: Organization of the gene and characterization of the promoter. Hum Mol Genet. 8:137–142. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Andreeff M, Roth JA and Fang B: hTERT promoter induces tumor-specific Bax gene expression and cell killing in syngenic mouse tumor model and prevents systemic toxicity. Gene Ther. 9:30–37. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kyo S, Kanaya T, Takakura M, Tanaka M, Yamashita A, Inoue H and Inoue M: Expression of human telomerase subunits in ovarian malignant, borderline and benign tumors. Int J Cancer. 80:804–809. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bostwick DG: Prospective origins of prostate carcinoma. Prostatic intraepithelial neoplasia and atypical adenomatous hyperplasia. Cancer. 78:330–336. 1996. View Article : Google Scholar : PubMed/NCBI | |
Iczkowski KA, Pantazis CG, McGregor DH, Wu Y and Tawfik OW: Telomerase reverse transcriptase subunit immunoreactivity: A marker for high-grade prostate carcinoma. Cancer. 95:2487–2493. 2002. View Article : Google Scholar : PubMed/NCBI | |
Paradis V, Dargère D, Laurendeau I, Benoît G, Vidaud M, Jardin A and Bedossa P: Expression of the RNA component of human telomerase (hTR) in prostate cancer, prostatic intraepithelial neoplasia, and normal prostate tissue. J Pathol. 189:213–218. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Kapusta LR, Slingerland JM and Klotz LH: Telomerase activity in prostate cancer, prostatic intraepithelial neoplasia, and benign prostatic epithelium. Cancer Res. 58:619–621. 1998.PubMed/NCBI | |
Sato D, Kurihara Y, Kondo S, Shirota T, Urata Y, Fujiwara T and Shintani S: Antitumor effects of telomerase-specific replication-selective oncolytic viruses for adenoid cystic carcinoma cell lines. Oncol Rep. 30:2659–2664. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tazawa H, Kagawa S and Fujiwara T: Oncolytic adenovirus-induced autophagy: Tumor-suppressive effect and molecular basis. Acta Med Okayama. 67:333–342. 2013.PubMed/NCBI | |
Yano S, Tazawa H, Hashimoto Y, Shirakawa Y, Kuroda S, Nishizaki M, Kishimoto H, Uno F, Nagasaka T, Urata Y, et al: A genetically engineered oncolytic adenovirus decoys and lethally traps quiescent cancer stem-like cells in S/G2/M phases. Clin Cancer Res. 19:6495–6505. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yano S, Miwa S, Kishimoto H, Urata Y, Tazawa H, Kagawa S, Bouvet M, Fujiwara T and Hoffman RM: Eradication of osteosarcoma by fluorescence-guided surgery with tumor labeling by a killer-reporter adenovirus. J Orthop Res. 34:836–844. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yano S, Takehara K, Miwa S, Kishimoto H, Hiroshima Y, Murakami T, Urata Y, Kagawa S, Bouvet M, Fujiwara T and Hoffman RM: Improved resection and outcome of colon-cancer liver metastasis with fluorescence-guided surgery using in situ GFP labeling with a telomerase-dependent adenovirus in an orthotopic mouse model. PLoS One. 11:e01487602016. View Article : Google Scholar : PubMed/NCBI | |
Yano S, Takehara K, Miwa S, Kishimoto H, Tazawa H, Urata Y, Kagawa S, Bouvet M, Fujiwara T and Hoffman RM: Fluorescence-guided surgery of a highly-metastatic variant of human triple-negative breast cancer targeted with a cancer-specific GFP adenovirus prevents recurrence. Oncotarget. 7:75635–75647. 2016.PubMed/NCBI | |
Huang P, Watanabe M, Kaku H, Kashiwakura Y, Chen J, Saika T, Nasu Y, Fujiwara T, Urata Y and Kumon H: Direct and distant antitumor effects of a telomerase-selective oncolytic adenoviral agent, OBP-301, in a mouse prostate cancer model. Cancer Gene Ther. 15:315–322. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Qi JC, Lian WF, Cai WQ, Li W and Liu KL: The animal research of recombinant adenovirus controlled by human telomerase reverse transcriptase promoter in the treatment of human prostate cancer. Zhonghua Wai Ke Za Zhi. 44:1252–1255. 2006.(In Chinese). PubMed/NCBI | |
Bhang HE, Gabrielson KL, Laterra J, Fisher PB and Pomper MG: Tumor-specific imaging through progression elevated gene-3 promoter-driven gene expression. Nat Med. 17:123–129. 2011. View Article : Google Scholar : PubMed/NCBI | |
Greco A, Di Benedetto A, Howard CM, Kelly S, Nande R, Dementieva Y, Miranda M, Brunetti A, Salvatore M, Claudio L, et al: Eradication of therapy-resistant human prostate tumors using an ultrasound-guided site-specific cancer terminator virus delivery approach. Mol Ther. 18:295–306. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sarkar D, Su ZZ, Vozhilla N, Park ES, Gupta P and Fisher PB: Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proc Natl Acad Sci USA. 102:14034–14039. 2005; View Article : Google Scholar : PubMed/NCBI | |
Su ZZ, Sarkar D, Emdad L, Duigou GJ, Young CS, Ware J, Randolph A, Valerie K and Fisher PB: Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter. Proc Natl Acad Sci USA. 102:1059–1064. 2005; View Article : Google Scholar : PubMed/NCBI | |
Su ZZ, Shi Y and Fisher PB: Subtraction hybridization identifies a transformation progression-associated gene PEG-3 with sequence homology to a growth arrest and DNA damage-inducible gene. Proc Natl Acad Sci USA. 94:9125–9130. 1997; View Article : Google Scholar : PubMed/NCBI | |
Sarkar D, Lebedeva IV, Su ZZ, Park ES, Chatman L, Vozhilla N, Dent P, Curiel DT and Fisher PB: Eradication of therapy-resistant human prostate tumors using a cancer terminator virus. Cancer Res. 67:5434–5442. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fisher LW, Whitson SW, Avioli LV and Termine JD: Matrix sialoprotein of developing bone. J Biol Chem. 258:12723–12727. 1983.PubMed/NCBI | |
Tye CE, Rattray KR, Warner KJ, Gordon JA, Sodek J, Hunter GK and Goldberg HA: Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J Biol Chem. 278:7949–7955. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fedarko NS, Jain A, Karadag A, Van Eman MR and Fisher LW: Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res. 7:4060–4066. 2001.PubMed/NCBI | |
Tu Q, Zhang J, Fix A, Brewer E, Li YP, Zhang ZY and Chen J: Targeted overexpression of BSP in osteoclasts promotes bone metastasis of breast cancer cells. J Cell Physiol. 218:135–145. 2009. View Article : Google Scholar : PubMed/NCBI | |
Waltregny D, Bellahcène A, Van Riet I, Fisher LW, Young M, Fernandez P, Dewé W, de Leval J and Castronovo V: Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J Natl Cancer Inst. 90:1000–1008. 1998. View Article : Google Scholar : PubMed/NCBI | |
Canales BK, Li Y, Thompson MG, Gleason JM, Chen Z, Malaeb B, Corey DR, Herbert BS, Shay JW and Koeneman KS: Small molecule, oligonucleotide-based telomerase template inhibition in combination with cytolytic therapy in an in vitro androgen-independent prostate cancer model. Urol Oncol. 24:141–151. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Kacka M, Thompson M, Hsieh JT and Koeneman KS: Conditionally replicating adenovirus therapy utilizing bone sialoprotein promoter (Ad-BSP-E1a) in an in vivo study of treating androgen-independent intraosseous prostate cancer. Urol Oncol. 29:624–633. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shariat SF, Semjonow A, Lilja H, Savage C, Vickers AJ and Bjartell A: Tumor markers in prostate cancer I: Blood-based markers. Acta Oncol. 50 Suppl 1:S61–S75. 2011. View Article : Google Scholar | |
Vickers AJ, Cronin AM, Roobol MJ, Savage CJ, Peltola M, Pettersson K, Scardino PT, Schröder FH and Lilja H: A four-kallikrein panel predicts prostate cancer in men with recent screening: Data from the European randomized study of screening for prostate cancer, rotterdam. Clin Cancer Res. 16:3232–3239. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jansen FH, Roobol M, Jenster G, Schröder FH and Bangma CH: Screening for prostate cancer in 2008 II: The importance of molecular subforms of prostate-specific antigen and tissue kallikreins. Eur Urol. 55:563–574. 2009. View Article : Google Scholar : PubMed/NCBI | |
Steuber T, Vickers AJ, Haese A, Becker C, Pettersson K, Chun FK, Kattan MW, Eastham JA, Scardino PT, Huland H and Lilja H: Risk assessment for biochemical recurrence prior to radical prostatectomy: Significant enhancement contributed by human glandular kallikrein 2 (hK2) and free prostate specific antigen (PSA) in men with moderate PSA-elevation in serum. Int J Cancer. 118:1234–1240. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mattsson JM, Ravela S, Hekim C, Jonsson M, Malm J, Närvänen A, Stenman UH and Koistinen H: Proteolytic activity of prostate-specific antigen (PSA) towards protein substrates and effect of peptides stimulating PSA activity. PLoS One. 9:e1078192014. View Article : Google Scholar : PubMed/NCBI | |
Yu DC, Sakamoto GT and Henderson DR: Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res. 59:1498–1504. 1999.PubMed/NCBI | |
Gardner TA, Lee SJ, Lee SD, Li X, Shirakawa T, Kwon DD, Park RY, Ahn KY and Jung C: Differential expression of osteocalcin during the metastatic progression of prostate cancer. Oncol Rep. 21:903–908. 2009.PubMed/NCBI | |
Thulin M Hagberg, Jennbacken K, Damber JE and Welén K: Osteoblasts stimulate the osteogenic and metastatic progression of castration-resistant prostate cancer in a novel model for in vitro and in vivo studies. Clin Exp Metastasis. 31:269–283. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koizumi M, Yonese J, Fukui I and Ogata E: Metabolic gaps in bone formation may be a novel marker to monitor the osseous metastasis of prostate cancer. J Urol. 167:1863–1866. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nimptsch K, Rohrmann S, Nieters A and Linseisen J: Serum undercarboxylated osteocalcin as biomarker of vitamin K intake and risk of prostate cancer: A nested case-control study in the Heidelberg cohort of the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev. 18:49–56. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pi M and Quarles LD: GPRC6A regulates prostate cancer progression. Prostate. 72:399–409. 2012. View Article : Google Scholar : PubMed/NCBI | |
Koeneman KS, Kao C, Ko SC, Yang L, Wada Y, Kallmes DF, Gillenwater JY, Zhau HE, Chung LW and Gardner TA: Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J Urol. 18:102–110. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kubo H, Gardner TA, Wada Y, Koeneman KS, Gotoh A, Yang L, Kao C, Lim SD, Amin MB, Yang H, et al: Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum Gene Ther. 14:227–241. 2003. View Article : Google Scholar : PubMed/NCBI | |
Matsubara S, Wada Y, Gardner TA, Egawa M, Park MS, Hsieh CL, Zhau HE, Kao C, Kamidono S, Gillenwater JY and Chung LW: A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res. 61:6012–6019. 2001.PubMed/NCBI | |
Hsieh CL, Yang L, Miao L, Yeung F, Kao C, Yang H, Zhau HE and Chung LW: A novel targeting modality to enhance adenoviral replication by vitamin D(3) in androgen-independent human prostate cancer cells and tumors. Cancer Res. 62:3084–3092. 2002.PubMed/NCBI | |
Dash R, Su ZZ, Lee SG, Azab B, Boukerche H, Sarkar D and Fisher PB: Inhibition of AP-1 by SARI negatively regulates transformation progression mediated by CCN1. Oncogene. 29:4412–4423. 2010. View Article : Google Scholar : PubMed/NCBI | |
Harris LG, Pannell LK, Singh S, Samant RS and Shevde LA: Increased vascularity and spontaneous metastasis of breast cancer by hedgehog signaling mediated upregulation of cyr61. Oncogene. 31:3370–3380. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Fan E, Sun S, Ma X, Zhang X, Han DM and Cong YS: Cyr61 is up-regulated in prostate cancer and associated with the p53 gene status. J Cell Biochem. 106:738–744. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sarkar S, Quinn BA, Shen XN, Dash R, Das SK, Emdad L, Klibanov AL, Wang XY, Pellecchia M, Sarkar D and Fisher PB: Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic. Oncotarget. 6:10712–10727. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ, Kim HS, Yu R, Lee K, Gardner TA, Jung C, Jeng MH, Yeung F, Cheng L and Kao C: Novel prostate-specific promoter derived from PSA and PSMA enhancers. Mol Ther. 6:415–421. 2002. View Article : Google Scholar : PubMed/NCBI | |
Adamson RE, Frazier AA, Evans H, Chambers KF, Schenk E, Essand M, Birnie R, Mitry RR, Dhawan A and Maitland NJ: In vitro primary cell culture as a physiologically relevant method for preclinical testing of human oncolytic adenovirus. Hum Gene Ther. 23:218–30. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cheng WS, Dzojic H, Nilsson B, Totterman TH and Essand M: An oncolytic conditionally replicating adenovirus for hormone-dependent and hormone-independent prostate cancer. Cancer Gene Ther. 13:13–20. 2006. View Article : Google Scholar : PubMed/NCBI | |
Danielsson A, Dzojic H, Nilsson B and Essand M: Increased therapeutic efficacy of the prostate-specific oncolytic adenovirus Ad[I/PPT-E1A] by reduction of the insulator size and introduction of the full-length E3 region. Cancer Gene Ther. 15:203–213. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dzojic H, Cheng WS and Essand M: Two-step amplification of the human PPT sequence provides specific gene expression in an immunocompetent murine prostate cancer model. Cancer Gene Ther. 14:233–240. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cheng WS, Kraaij R, Nilsson B, Van Der Weel L, de Ridder CM, Totterman TH and Essand M: A novel TARP-promoter-based adenovirus against hormone-dependent and hormone-refractory prostate cancer. Mol Ther. 10:355–364. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kraaij R, Van Der Weel L, de Ridder CM, Van Der Korput HA, Zweistra JL, van Rijswijk AL, Bangma CH and Trapman J: A small chimeric promoter for high prostate-specific transgene expression from adenoviral vectors. Prostate. 67:829–839. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zhang Y, Liu MM, Zhou H, Chowdhury W, Lupold SE, Deweese TL and Rodriguez R: Evaluation of continuous low dose rate versus acute single high dose rate radiation combined with oncolytic viral therapy for prostate cancer. Int J Radiat Biol. 86:220–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT and Alemany R: A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res. 7:120–126. 2001.PubMed/NCBI | |
Cody JJ, Rivera AA, Lyons GR, Yang SW, Wang M, Ashley JW, Meleth S, Feng X, Siegal GP and Douglas JT: Expression of osteoprotegerin from a replicating adenovirus inhibits the progression of prostate cancer bone metastases in a murine model. Lab Invest. 93:268–278. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dong W, van Ginkel JW, Au KY, Alemany R, Meulenberg JJ and van Beusechem VW: ORCA-010, a novel potency-enhanced oncolytic adenovirus, exerts strong antitumor activity in preclinical models. Hum Gene Ther. 25:897–904. 2014. View Article : Google Scholar : PubMed/NCBI | |
Magnusson MK, Kraaij R, Leadley RM, De Ridder CM, van Weerden WM, Van Schie KA, Van Der Kroeg M, Hoeben RC, Maitland NJ and Lindholm L: A transductionally retargeted adenoviral vector for virotherapy of Her2/neu-expressing prostate cancer. Hum Gene Ther. 23:70–82. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shen YH, Yang F, Wang H, Cai ZJ, Xu YP, Zhao A, Su Y, Zhang G and Zhu SX: Arg-Gly-Asp (RGD)-modified E1A/E1B double mutant adenovirus enhances antitumor activity in prostate cancer cells in vitro and in mice. PLoS One. 11:e01471732016. View Article : Google Scholar : PubMed/NCBI | |
Azab BM, Dash R, Das SK, Bhutia SK, Sarkar S, Shen XN, Quinn BA, Dent P, Dmitriev IP, Wang XY, et al: Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3-CTV). J Cell Physiol. 229:34–43. 2014.PubMed/NCBI | |
Oneal MJ, Trujillo MA, Davydova J, McDonough S, Yamamoto M and Morris JC III: Effect of increased viral replication and infectivity enhancement on radioiodide uptake and oncolytic activity of adenovirus vectors expressing the sodium iodide symporter. Cancer Gene Ther. 20:195–200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hakkarainen T, Rajecki M, Sarparanta M, Tenhunen M, Airaksinen AJ, Desmond RA, Kairemo K and Hemminki A: Targeted radiotherapy for prostate cancer with an oncolytic adenovirus coding for human sodium iodide symporter. Clin Cancer Res. 15:5396–5403. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rajecki M, Kanerva A, Stenman UH, Tenhunen M, Kangasniemi L, Särkioja M, Ala-Opas MY, Alfthan H, Sankila A, Rintala E, et al: Treatment of prostate cancer with Ad5/3Delta24hCG allows non-invasive detection of the magnitude and persistence of virus replication in vivo. Mol Cancer Ther. 6:742–751. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Zhang Z, Yang Y, Hu Z, Wang CH, Morgan M, Wu Y, Hutten R, Xiao X, Stock S, et al: Ad5/48 hexon oncolytic virus expressing sTGFβRIIFc produces reduced hepatic and systemic toxicities and inhibits prostate cancer bone metastases. Mol Ther. 22:1504–1517. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim JS, Lee SD, Lee SJ and Chung MK: Development of an immunotherapeutic adenovirus targeting hormone-independent prostate cancer. Onco Targets Ther. 6:1635–1642. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hwang JE, Joung JY, Shin SP, Choi MK, Kim JE, Kim YH, Park WS, Lee SJ and Lee KH: Ad5/35E1aPSESE4: A novel approach to marking circulating prostate tumor cells with a replication competent adenovirus controlled by PSA/PSMA transcription regulatory elements. Cancer Lett. 372:57–64. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD and Kirn DH: ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 3:639–645. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mao LJ, Zhang J, Liu N, Fan L, Yang DR, Xue BX, Shan YX and Zheng JN: Oncolytic virus carrying shRNA targeting SATB1 inhibits prostate cancer growth and metastasis. Tumour Biol. 36:9073–9081. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ding M, Cao X, Xu HN, Fan JK, Huang HL, Yang DQ, Li YH, Wang J, Li R and Liu XY: Prostate cancer-specific and potent antitumor effect of a DD3-controlled oncolytic virus harboring the PTEN gene. PLoS One. 7:e351532012. View Article : Google Scholar : PubMed/NCBI | |
Radhakrishnan S, Miranda E, Ekblad M, Holford A, Pizarro MT, Lemoine NR and Halldén G: Efficacy of oncolytic mutants targeting pRb and p53 pathways is synergistically enhanced when combined with cytotoxic drugs in prostate cancer cells and tumor xenografts. Hum Gene Ther. 21:1311–1325. 2010. View Article : Google Scholar : PubMed/NCBI | |
Oberg D, Yanover E, Adam V, Sweeney K, Costas C, Lemoine NR and Halldén G: Improved potency and selectivity of an oncolytic E1ACR2 and E1B19K deleted adenoviral mutant in prostate and pancreatic cancers. Clin Cancer Res. 16:541–553. 2010. View Article : Google Scholar : PubMed/NCBI | |
Satoh M, Wang H, Ishidoya S, Abe H, Moriya T, Hamada H and Arai Y: Oncolytic virotherapy for prostate cancer by E1A, E1B mutant adenovirus. Urology. 70:1243–1248. 2007. View Article : Google Scholar : PubMed/NCBI | |
DeWeese TL, Van Der Poel H, Li S, Mikhak B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez R, et al: A phase I trial of CV706, a replication-competent, PAS selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 61:7464–7472. 2001.PubMed/NCBI | |
Freytag SO, Khil M, Stricker H, Peabody J, Menon M, DePeralta-Venturina M, Nafziger D, Pegg J, Paielli D, Brown S, et al: Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 62:4968–4976. 2002.PubMed/NCBI | |
Freytag SO, Stricker H, Peabody J, Pegg J, Paielli D, Movsas B, Barton KN, Brown SL, Lu M and Kim JH: Five-year follow-up of trial of replication-competent adenovirus-mediated suicide gene therapy for treatment of prostate cancer. Mol Ther. 15:636–642. 2007. View Article : Google Scholar : PubMed/NCBI | |
Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, van Ummersen L, Yu DC, Aimi J, Ando D, Working P, et al: A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther. 14:107–117. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kanerva A, Nokisalmi P, Diaconu I, Koski A, Cerullo V, Liikanen I, Tähtinen S, Oksanen M, Heiskanen R, Pesonen S, et al: Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clin Cancer Res. 19:2734–72744. 2013. View Article : Google Scholar : PubMed/NCBI | |
Breitbach CJ, Burke J, Jonker D, Stephenson J, Haas AR, Chow LQ, Nieva J, Hwang TH, Moon A, Patt R, et al: Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 477:99–102. 2011. View Article : Google Scholar : PubMed/NCBI | |
Harrington KJ, Puzanov I, Hecht JR, Hodi FS, Szabo Z, Murugappan S and Kaufman HL: Clinical development of talimogene laherparepvec (T-VEC): A modified herpes simplex virus type-1-derived oncolytic immunotherapy. Expert Rev Anticancer Ther. 15:1389–1403. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Zhang Y, Chang G and Zhang J: Comparison of prostate-specific promoters and the use of PSP-driven virotherapy for prostate cancer. Biomed Res Int. 2013:6246322013. View Article : Google Scholar : PubMed/NCBI | |
Martiniello-Wilks R, Tsatralis T, Russell P, Brookes DE, Zandvliet D, Lockett LJ, Both GW, Molloy PL and Russell PJ: Transcription-targeted gene therapy for androgen-independent prostate cancer. Cancer Gene Ther. 9:443–452. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wang J, Li C, Hu N, Wang K, Ji H, He D, Quan C, Li X, Jin N and Li Y: Potent growth-inhibitory effect of a dual cancer-specific oncolytic adenovirus expressing apoptin on prostate carcinoma. Int J Oncol. 42:1052–1060. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Zhao X, Liu Y, Young CY, Tindall DJ, Slawin KM and Spencer DM: Robust prostate-specific expression for targeted gene therapy based on the human kallikrein 2 promoter. Hum Gene Ther. 12:549–561. 2001. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang YP, Kim HS, Bae KH, Stantz KM, Lee SJ, Jung C, Jiménez JA, Gardner TA, Jeng MH and Kao C: Gene therapy for prostate cancer by controlling adenovirus E1a and E4 gene expression with PSES enhancer. Cancer Res. 65:1941–1951. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jimenez JA, Li X, Zhang YP, Bae KH, Mohammadi Y, Pandya P, Kao C and Gardner TA: Antitumor activity of Ad-IU2, a prostate-specific replication-competent adenovirus encoding the apoptosis inducer, TRAIL. Cancer Gene Ther. 17:180–191. 2010. View Article : Google Scholar : PubMed/NCBI |