1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
He YT, Hou J, Chen ZF, Qiao CY, Song GH,
Meng FS, Jin HX and Chen C: Trends in incidence of esophageal and
gastric cardia cancer in high-risk areas in China. Eur J Cancer
Prev. 17:71–76. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lin Y, Totsuka Y, He Y, Kikuchi S, Qiao Y,
Ueda J, Wei W, Inoue M and Tanaka H: Epidemiology of esophageal
cancer in Japan and China. J Epidemiol. 23:233–242. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
D'Journo XB and Thomas PA: Current
management of esophageal cancer. J Thorac Dis. 6 Suppl 2:S253–S264.
2014.PubMed/NCBI
|
5
|
Kasper S and Schuler M: Targeted therapies
in gastroesophageal cancer. Eur J Cancer. 50:1247–1258. 2014.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Mohamed A, El-Rayes B, Khuri FR and Saba
NF: Targeted therapies in metastatic esophageal cancer: Advances
over the past decade. Crit Rev Oncol Hematol. 91:186–196. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Wu CC, Taylor RS, Lane DR, Ladinsky MS,
Weisz JA and Howell KE: GMx33: A novel family of trans-Golgi
proteins identified by proteomics. Traffic. 1:963–975. 2000.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bell AW, Ward MA, Blackstock WP, Freeman
HN, Choudhary JS, Lewis AP, Chotai D, Fazel A, Gushue JN, Paiement
J, et al: Proteomics characterization of abundant Golgi membrane
proteins. J Biol Chem. 276:5152–5165. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tu L, Tai WC, Chen L and Banfield DK:
Signal-mediated dynamic retention of glycosyltransferases in the
Golgi. Science. 321:404–407. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tu L, Chen L and Banfield DK: A conserved
N-terminal arginine-motif in GOLPH3-family proteins mediates
binding to coatomer. Traffic. 13:1496–1507. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Guzik-Lendrum S, Heissler SM, Billington
N, Takagi Y, Yang Y, Knight PJ, Homsher E and Sellers JR: Mammalian
myosin-18A, a highly divergent myosin. J Biol Chem. 288:9532–9548.
2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Taft MH, Behrmann E, Munske-Weidemann LC,
Thiel C, Raunser S and Manstein DJ: Functional characterization of
human myosin-18A and its interaction with F-actin and GOLPH3. J
Biol Chem. 288:30029–30041. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dippold HC, Ng MM, Farber-Katz SE, Lee SK,
Kerr ML, Peterman MC, Sim R, Wiharto PA, Galbraith KA, Madhavarapu
S, et al: GOLPH3 bridges phosphatidylinositol-4-phosphate and
actomyosin to stretch and shape the Golgi to promote budding. Cell.
139:337–351. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Graham TR and Burd CG: Coordination of
Golgi functions by phosphatidylinositol 4-kinases. Trends Cell
Biol. 21:113–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bugarcic A, Zhe Y, Kerr MC, Griffin J,
Collins BM and Teasdale RD: Vps26A and Vps26B subunits define
distinct retromer complexes. Traffic. 12:1759–1773. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Bishe B, Syed GH, Field SJ and Siddiqui A:
Role of phosphatidylinositol 4-phosphate (PI4P) and its binding
protein GOLPH3 in hepatitis C virus secretion. J Biol Chem.
287:27637–27647. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lenoir M and Overduin M: PtdIns(4)P
signalling and recognition systems. Adv Exp Med Biol. 991:59–83.
2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sechi S, Colotti G, Belloni G, Mattei V,
Frappaolo A, Raffa GD, Fuller MT and Giansanti MG: GOLPH3 is
essential for contractile ring formation and Rab11 localization to
the cleavage site during cytokinesis in Drosophila melanogaster.
PLoS Genet. 10:e10043052014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Farber-Katz SE, Dippold HC, Buschman MD,
Peterman MC, Xing M, Noakes CJ, Tat J, Ng MM, Rahajeng J, Cowan DM,
et al: DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3.
Cell. 156:413–427. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Scott KL, Kabbarah O, Liang MC, Ivanova E,
Anagnostou V, Wu J, Dhakal S, Wu M, Chen S, Feinberg T, et al:
GOLPH3 modulates mTOR signalling and rapamycin sensitivity in
cancer. Nature. 459:1085–1090. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kunigou O, Nagao H, Kawabata N, Ishidou Y,
Nagano S, Maeda S, Komiya S and Setoguchi T: Role of GOLPH3 and
GOLPH3L in the proliferation of human rhabdomyosarcoma. Oncol Rep.
26:1337–1342. 2011.PubMed/NCBI
|
22
|
Li H, Guo L, Chen SW, Zhao XH, Zhuang SM,
Wang LP, Song LB and Song M: GOLPH3 overexpression correlates with
tumor progression and poor prognosis in patients with clinically N0
oral tongue cancer. J Transl Med. 10:1682012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sotgia F, Whitaker-Menezes D,
Martinez-Outschoorn UE, Salem AF, Tsirigos A, Lamb R, Sneddon S,
Hulit J, Howell A and Lisanti MP: Mitochondria ‘fuel’ breast cancer
metabolism: Fifteen markers of mitochondrial biogenesis label
epithelial cancer cells, but are excluded from adjacent stromal
cells. Cell Cycle. 11:4390–4401. 2012. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou J, Xu T, Qin R, Yan Y, Chen C, Chen
Y, Yu H, Xia C, Lu Y, Ding X, et al: Overexpression of Golgi
phosphoprotein-3 (GOLPH3) in glioblastoma multiforme is associated
with worse prognosis. J Neurooncol. 110:195–203. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hu BS, Hu H, Zhu CY, Gu YL and Li JP:
Overexpression of GOLPH3 is associated with poor clinical outcome
in gastric cancer. Tumour Biol. 34:515–520. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhou X, Zhan W, Bian W, Hua L, Shi Q, Xie
S, Yang D, Li Y, Zhang X, Liu G and Yu R: GOLPH3 regulates the
migration and invasion of glioma cells though RhoA. Biochem Biophys
Res Commun. 433:338–344. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ma Y, Ren Y, Zhang X, Lin L, Liu Y, Rong
F, Wen W and Li F: High GOLPH3 expression is associated with a more
aggressive behavior of epithelial ovarian carcinoma. Virchows Arch.
464:443–452. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang JH, Chen XT, Wen ZS, Zheng M, Deng
JM, Wang MZ, Lin HX, Chen K, Li J, Yun JP, et al: High expression
of GOLPH3 in esophageal squamous cell carcinoma correlates with
poor prognosis. PLoS One. 7:e456222012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Salem AF, Whitaker-Menezes D, Lin Z,
Martinez-Outschoorn UE, Tanowitz HB, Al-Zoubi MS, Howell A, Pestell
RG, Sotgia F and Lisanti MP: Two-compartment tumor metabolism:
Autophagy in the tumor microenvironment and oxidative mitochondrial
metabolism (OXPHOS) in cancer cells. Cell Cycle. 11:2545–2556.
2012. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Katoh M and Katoh M: WNT signaling pathway
and stem cell signaling network. Clin Cancer Res. 13:4042–4045.
2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Whitfield JF: Calcium, calcium-sensing
receptor and colon cancer. Cancer Lett. 275:9–16. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Raghu D and Karunagaran D: Plumbagin
downregulates Wnt signaling independent of p53 in human colorectal
cancer cells. J Nat Prod. 77:1130–1134. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
van de Wetering M, Sancho E, Verweij C, de
Lau W, Oving I, Hurlstone A, Van Der Horn K, Batlle E, Coudreuse D,
Haramis AP, et al: The beta-catenin/TCF-4 complex imposes a crypt
progenitor phenotype on colorectal cancer cells. Cell. 111:241–250.
2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Shiozaki A, Nakashima S, Ichikawa D,
Fujiwara H, Konishi H, Komatsu S, Kubota T, Okamoto K, Iitaka D,
Shimizu H, et al: Prognostic significance of p21 expression in
patients with esophageal squamous cell carcinoma. Anticancer Res.
33:4329–4335. 2013.PubMed/NCBI
|
35
|
Peng H, Zhong XY, Liu KP and Li SM:
Expression and significance of adenomatous polyposis coli,
beta-catenin, E-cadherin and cyclin D1 in esophageal squamous cell
carcinoma assessed by tissue microarray. Ai Zheng. 28:38–41.
2009.PubMed/NCBI
|
36
|
van Kempen LC and Coussens LM: MMP9
potentiates pulmonary metastasis formation. Cancer Cell. 2:251–252.
2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang S, Liu Z, Wang L and Zhang X:
NF-kappaB signaling pathway, inflammation and colorectal cancer.
Cell Mol Immunol. 6:327–334. 2009. View Article : Google Scholar : PubMed/NCBI
|