Identification of 14‑3‑3ζ as a potential biomarker in gastric cancer by proteomics‑based analysis
- Authors:
- Xin‑Xin Liu
- Hua Ye
- Peng Wang
- Yi Zhang
- Jian‑Ying Zhang
-
Affiliations: Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China - Published online on: September 18, 2017 https://doi.org/10.3892/mmr.2017.7496
- Pages: 7759-7765
This article is mentioned in:
Abstract
Bertuccio P, Chatenoud L, Levi F, Praud D, Ferlay J, Negri E, Malvezzi M and La Vecchia C: Recent patterns in gastric cancer: A global overview. Int J Cancer. 125:666–673. 2009. View Article : Google Scholar : PubMed/NCBI | |
Peleteiro B, Bastos A, Ferro A and Lunet N: Prevalence of helicobacter pylori infection worldwide: A systematic review of studies with national coverage. Dig Dis Sci. 59:1698–1709. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kamangar F, Dores GM and Anderson WF: Patterns of cancer incidence, mortality, and prevalence across five continents: Defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 24:2137–2150. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hiripi E, Jansen L, Gondos A, Emrich K, Holleczek B, Katalinic A, Luttmann S, Nennecke A and Brenner H: Gekid Cancer Survival Working Group: Survival of stomach and esophagus cancer patients in Germany in the early 21st century. Acta Oncol. 51:906–914. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hundahl SA, Phillips JL and Menck HR: The National Cancer Data Base Report on poor survival of U.S. gastric carcinoma patients treated with gastrectomy: Fifth Edition American Joint Committee on Cancer staging, proximal disease, and the ‘different disease’ hypothesis. Cancer. 88:921–932. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ushijima T and Sasako M: Focus on gastric cancer. Cancer Cell. 5:121–125. 2004. View Article : Google Scholar : PubMed/NCBI | |
Srinivas PR, Kramer BS and Srivastava S: Trends in biomarker research for cancer detection. Lancet Oncol. 2:698–704. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tan HT, Low J, Lim SG and Chung MC: Serum autoantibodies as biomarkers for early cancer detection. FEBS J. 276:6880–6904. 2009. View Article : Google Scholar : PubMed/NCBI | |
Anderson KS and LaBaer J: The sentinel within: Exploiting the immune system for cancer biomarkers. J Proteome Res. 4:1123–1133. 2005. View Article : Google Scholar : PubMed/NCBI | |
Caron M, Choquet-Kastylevsky G and Joubert-Caron R: Cancer immunomics using autoantibody signatures for biomarker discovery. Mol Cell Proteomics. 6:1115–1122. 2007. View Article : Google Scholar : PubMed/NCBI | |
Casiano CA, Mediavilla-Varela M and Tan EM: Tumor-associated antigen arrays for the serological diagnosis of cancer. Mol Cell Proteomics. 5:1745–1759. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fernandez Madrid F: Autoantibodies in breast cancer sera: Candidate biomarkers and reporters of tumorigenesis. Cancer Lett. 230:187–198. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tan EM: Autoantibodies as reporters identifying aberrant cellular mechanisms in tumorigenesis. J Clin Invest. 108:1411–1415. 2001. View Article : Google Scholar : PubMed/NCBI | |
Davis MA and Hanash S: High-throughput genomic technology in research and clinical management of breast cancer. Plasma-based proteomics in early detection and therapy. Breast Cancer Res. 8:2172006. View Article : Google Scholar : PubMed/NCBI | |
Looi KS, Nakayasu ES, Diaz RA, Tan EM, Almeida IC and Zhang JY: Using proteomic approach to identify tumor-associated antigens as markers in hepatocellular carcinoma. J Proteome Res. 7:4004–4012. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang K, Zhang J, Liu SS, Dai L and Zhang JY: Using proteomic approach to identify tumor-associated proteins as biomarkers in human esophageal squamous cell carcinoma. J Proteome Res. 10:2863–2872. 2011. View Article : Google Scholar : PubMed/NCBI | |
Peng B, Huang X, Nakayasu ES, Petersen JR, Qiu S, Almeida IC and Zhang JY: Using immunoproteomics to identify alpha-enolase as an autoantigen in liver fibrosis. J Proteome Res. 12:1789–1796. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yegin EG and Duman DG: Staging of esophageal and gastric cancer in 2014. Minerva Med. 105:391–411. 2014.PubMed/NCBI | |
Jung E, Heller M, Sanchez JC and Hochstrasser DF: Proteomics meets cell biology: The establishment of subcellular proteomes. Electrophoresis. 21:3369–3377. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dai L, Tsay JC, Li J, Yie TA, Munger JS, Pass H, Rom WN, Zhang Y, Tan EM and Zhang JY: Autoantibodies against tumor-associated antigens in the early detection of lung cancer. Lung Cancer. 99:172–179. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-Madrid F, Tang N, Alansari H, Granda JL, Tait L, Amirikia KC, Moroianu M, Wang X and Karvonen RL: Autoantibodies to Annexin XI-A and other autoantigens in the diagnosis of breast cancer. Cancer Res. 64:5089–5096. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Herlyn D, Wong KK, Park DC, Schorge JO, Lu KH, Skates SJ, Cramer DW, Berkowitz RS and Mok SC: Identification of epithelial cell adhesion molecule autoantibody in patients with ovarian cancer. Clin Cancer Res. 9:4782–4791. 2003.PubMed/NCBI | |
Timms JF and Cramer R: Difference gel electrophoresis. Proteomics. 8:4886–4897. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brichory FM, Misek DE, Yim AM, Krause MC, Giordano TJ, Beer DG and Hanash SM: An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci USA. 98:9824–9829. 2001; View Article : Google Scholar : PubMed/NCBI | |
Brichory F, Beer D, Le Naour F, Giordano T and Hanash S: Proteomics-based identification of protein gene product 9.5 as a tumor antigen that induces a humoral immune response in lung cancer. Cancer Res. 61:7908–7912. 2001.PubMed/NCBI | |
Chang JW, Lee SH, Jeong JY, Chae HZ, Kim YC, Park ZY and Yoo YJ: Peroxiredoxin-I is an autoimmunogenic tumor antigen in non-small cell lung cancer. FEBS Lett. 579:2873–2877. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hong SH, Misek DE, Wang H, Puravs E, Giordano TJ, Greenson JK, Brenner DE, Simeone DM, Logsdon CD and Hanash SM: An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res. 64:5504–5510. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fujita Y, Nakanishi T, Hiramatsu M, Mabuchi H, Miyamoto Y, Miyamoto A, Shimizu A and Tanigawa N: Proteomics-based approach identifying autoantibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma. Clin Cancer Res. 12:6415–6420. 2006. View Article : Google Scholar : PubMed/NCBI | |
Le Naour F, Misek DE, Krause MC, Deneux L, Giordano TJ, Scholl S and Hanash SM: Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin Cancer Res. 7:3328–3335. 2001.PubMed/NCBI | |
Wu JY, Cheng CC, Wang JY, Wu DC, Hsieh JS, Lee SC and Wang WM: Discovery of tumor markers for gastric cancer by proteomics. PLoS One. 9:e841582014. View Article : Google Scholar : PubMed/NCBI | |
You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH and Lee YH: Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol. 73:2841–2853. 1999.PubMed/NCBI | |
Owsianka AM and Patel AH: Hepatitis C virus core protein interacts with a human DEAD box protein DDX3. Virology. 257:330–340. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mamiya N and Worman HJ: Hepatitis C virus core protein binds to a DEAD box RNA helicase. J Biol Chem. 274:15751–15756. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pugh TJ, Weeraratne SD, Archer TC, Krummel DA Pomeranz, Auclair D, Bochicchio J, Carneiro MO, Carter SL, Cibulskis K, Erlich RL, et al: Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature. 488:106–110. 2012. View Article : Google Scholar : PubMed/NCBI | |
Alur M, Nguyen MM, Eggener SE, Jiang F, Dadras SS, Stern J, Kimm S, Roehl K, Kozlowski J, Pins M, et al: Suppressive roles of calreticulin in prostate cancer growth and metastasis. Am J Pathol. 175:882–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chignard N, Shang S, Wang H, Marrero J, Bréchot C, Hanash S and Beretta L: Cleavage of endoplasmic reticulum proteins in hepatocellular carcinoma: Detection of generated fragments in patient sera. Gastroenterology. 130:2010–2022. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gromov P, Gromova I, Bunkenborg J, Cabezon T, Moreira JM, Timmermans-Wielenga V, Roepstorff P, Rank F and Celis JE: Up-regulated proteins in the fluid bathing the tumour cell microenvironment as potential serological markers for early detection of cancer of the breast. Mol Oncol. 4:65–89. 2010. View Article : Google Scholar : PubMed/NCBI | |
Iwaki H, Kageyama S, Isono T, Wakabayashi Y, Okada Y, Yoshimura K, Terai A, Arai Y, Iwamura H, Kawakita M and Yoshiki T: Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma-synuclein, and catechol-o-methyltransferase) identified by proteomic analysis. Cancer Sci. 95:955–961. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hong D, Chen HX, Yu HQ, Wang C, Deng HT, Lian QQ and Ge RS: Quantitative proteomic analysis of dexamethasone-induced effects on osteoblast differentiation, proliferation, and apoptosis in MC3T3-E1 cells using SILAC. Osteoporos Int. 22:2175–2186. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mizuno H, Honda M, Shirasaki T, Yamashita T, Yamashita T, Mizukoshi E and Kaneko S: Heterogeneous nuclear ribonucleoprotein A2/B1 in association with hTERT is a potential biomarker for hepatocellular carcinoma. Liver Int. 32:1146–1155. 2012. View Article : Google Scholar : PubMed/NCBI | |
Montagna C, Lyu MS, Hunter K, Lukes L, Lowther W, Reppert T, Hissong B, Weaver Z and Ried T: The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res. 63:2179–2187. 2003.PubMed/NCBI | |
Bergamaschi A, Christensen BL and Katzenellenbogen BS: Reversal of endocrine resistance in breast cancer: Interrelationships among 14-3-3ζ, FOXM1, and a gene signature associated with mitosis. Breast Cancer Res. 13:R702011. View Article : Google Scholar : PubMed/NCBI | |
Frasor J, Chang EC, Komm B, Lin CY, Vega VB, Liu ET, Miller LD, Smeds J, Bergh J and Katzenellenbogen BS: Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res. 66:7334–7340. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sun QK, Zhu JY, Wang W, Lv Y, Zhou HC, Yu JH, Xu GL, Ma JL, Zhong W and Jia WD: Diagnostic and prognostic significance of peroxiredoxin 1 expression in human hepatocellular carcinoma. Med Oncol. 31:7862014. View Article : Google Scholar : PubMed/NCBI | |
Granovsky AE and Rosner MR: Raf kinase inhibitory protein: A signal transduction modulator and metastasis suppressor. Cell Res. 18:452–457. 2008. View Article : Google Scholar : PubMed/NCBI | |
Akaishi J, Onda M, Asaka S, Okamoto J, Miyamoto S, Nagahama M, Ito K, Kawanami O and Shimizu K: Growth-suppressive function of phosphatidylethanolamine-binding protein in anaplastic thyroid cancer. Anticancer Res. 26:4437–4442. 2006.PubMed/NCBI | |
Houben R, Michel B, Vetter-Kauczok CS, Pföhler C, Laetsch B, Wolter MD, Leonard JH, Trefzer U, Ugurel S, Schrama D and Becker JC: Absence of classical MAP kinase pathway signalling in Merkel cell carcinoma. J Invest Dermatol. 126:1135–1142. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Ouyang GL, Yi H, Li MY, Zhang PF, Li C, Li JL, Liu YF, Chen ZC and Xiao ZQ: Identification of RKIP as an invasion suppressor protein in nasopharyngeal carcinoma by proteomic analysis. J Proteome Res. 7:5254–5262. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fu Z, Smith PC, Zhang L, Rubin MA, Dunn RL, Yao Z and Keller ET: Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst. 95:878–889. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB, et al: RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem. 279:17515–17523. 2004. View Article : Google Scholar : PubMed/NCBI | |
Aitken A: 14-3-3 proteins on the MAP. Trends Biochem Sci. 20:95–97. 1995. View Article : Google Scholar : PubMed/NCBI | |
Aitken A: 14-3-3 proteins: A historic overview. Semin Cancer Biol. 16:162–172. 2006. View Article : Google Scholar : PubMed/NCBI | |
Muslin AJ, Tanner JW, Allen PM and Shaw AS: Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 84:889–897. 1996. View Article : Google Scholar : PubMed/NCBI | |
van Hemert MJ, Steensma HY and van Heusden GP: 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays. 23:936–946. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tzivion G, Gupta VS, Kaplun L and Balan V: 14-3-3 proteins as potential oncogenes. Semin Cancer Biol. 16:203–213. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Meyerkord CL, Du Y, Khuri FR and Fu H: 14-3-3 proteins as potential therapeutic targets. Semin Cell Dev Biol. 22:705–712. 2011. View Article : Google Scholar : PubMed/NCBI | |
Neal CL and Yu D: 14-3-3ζ as a prognostic marker and therapeutic target for cancer. Expert Opin Ther Targets. 14:1343–1354. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Guo H, Treekitkarnmongkol W, Li P, Zhang J, Shi B, Ling C, Zhou X, Chen T, Chiao PJ, et al: 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer cell. 16:195–207. 2009. View Article : Google Scholar : PubMed/NCBI | |
Matta A, DeSouza LV, Shukla NK, Gupta SD, Ralhan R and Siu KW: Prognostic significance of head-and-neck cancer biomarkers previously discovered and identified using iTRAQ-labeling and multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res. 7:2078–2087. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fan T, Li R, Todd NW, Qiu Q, Fang HB, Wang H, Shen J, Zhao RY, Caraway NP, Katz RL, et al: Up-regulation of 14-3-3zeta in lung cancer and its implication as prognostic and therapeutic target. Cancer Res. 67:7901–7906. 2007. View Article : Google Scholar : PubMed/NCBI | |
Muslin AJ and Xing H: 14-3-3 proteins: Regulation of subcellular localization by molecular interference. Cell Signal. 12:703–709. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tzivion G and Avruch J: 14-3-3 proteins: Active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem. 277:3061–3064. 2002. View Article : Google Scholar : PubMed/NCBI | |
Benzinger A, Muster N, Koch HB, Yates JR III and Hermeking H: Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer. Mol Cell Proteomics. 4:785–795. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, et al: Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol. 14:1436–1450. 2004. View Article : Google Scholar : PubMed/NCBI |