1
|
Wang HL and Cooke J: Periodontal
regeneration techniques for treatment of periodontal diseases. Dent
Clin North Am. 49:637–659, vii. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Brancatisano FL, Maisetta G, Barsotti F,
Esin S, Miceli M, Gabriele M, Giuca MR, Campa M and Batoni G:
Reduced human beta defensin 3 in individuals with periodontal
disease. J Dent Res. 90:241–245. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lee SH, Jun HK, Lee HR, Chung CP and Choi
BK: Antibacterial and lipopolysaccharide (LPS)-neutralising
activity of human cationic antimicrobial peptides against
periodontopathogens. Int J Antimicrob Agents. 35:138–145. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang H, Watanabe H, Ogita M, Ichinose S
and Izumi Y: Effect of human beta-defensin-3 on the proliferation
of fibroblasts on periodontally involved root surfaces. Peptides.
32:888–894. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Meng X, Li M, Wang X, Wang Y and Ma D:
Both CD133+ and CD133− subpopulations of A549
and H446 cells contain cancer-initiating cells. Cancer Sci.
100:1040–1046. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu WH, Qian NS, Li R and Dou KF:
Replacing Hoechst33342 with Rhodamine123 in isolation of cancer
stem-like cells from the MHCC97 cell line. Toxicol In Vitro.
24:538–545. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ferrand A, Sandrin MS, Shulkes A and
Baldwin GS: Expression of gastrin precursors by CD133-positive
colorectal cancer cells is crucial for tumour growth. Biochim
Biophys Acta. 1793:477–488. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bexell D, Gunnarsson S, Siesjö P, Bengzon
J and Darabi A: CD133+ and nestin+
tumor-initiating cells dominate in N29 and N32 experimental
gliomas. Int J Cancer. 125:15–22. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Barcelos LS, Duplaa C, Kränkel N, Graiani
G, Invernici G, Katare R, Siragusa M, Meloni M, Campesi I, Monica
M, et al: Human CD133+ progenitor cells promote the
healing of diabetic ischemic ulcers by paracrine stimulation of
angiogenesis and activation of Wnt signaling. Circ Res.
104:1095–1102. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Boivin D, Labbé D, Fontaine N, Lamy S,
Beaulieu E, Gingras D and Béliveau R: The stem cell marker CD133
(prominin-1) is phosphorylated on cytoplasmic tyrosine-828 and
tyrosine-852 by Src and Fyn tyrosine kinases. Biochemistry.
48:3998–4007. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou J, Zhu B, DU HY, Sun TS, Zhang CH and
Yang LG: Detection and analysis of CD271, CD133 and CD34
expressions in bone marrow cells by flow cytometry with three color
fluorescence labelling. Zhongguo Shi Yan Xue Ye Xue Za Zhi.
17:133–136. 2009.(In Chinese). PubMed/NCBI
|
12
|
Polimeni G, Xiropaidis AV and Wikesjö UM:
Biology and principles of periodontal wound healing/regeneration.
Periodontol 2000. 41:30–47. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shi M, Ishikawa M, Kamei N, Nakasa T,
Adachi N, Deie M, Asahara T and Ochi M: Acceleration of skeletal
muscle regeneration in a rat skeletal muscle injury model by local
injection of human peripheral blood-derived CD133-positive cells.
Stem Cells. 27:949–960. 2009. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Huang GT, Zhang HB, Kim D, Liu L and Ganz
T: A model for antimicrobial gene therapy: Demonstration of human
beta-defensin 2 antimicrobial activities in vivo. Hum Gene Ther.
13:2017–2025. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sawamura D, Goto M, Shibaki A, Akiyama M,
McMillan JR, Abiko Y and Shimizu H: Beta defensin-3 engineered
epidermis shows highly protective effect for bacterial infection.
Gene Ther. 12:857–861. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhu L, Chuanchang D, Wei L, Yilin C and
Jiasheng D: Enhanced healing of goat femur-defect using BMP7
gene-modified BMSCs and load-bearing tissue-engineered bone. J
Orthop Res. 28:412–418. 2010.PubMed/NCBI
|
17
|
Zhu M, Miao B, Zhu J, Wang H and Zhou Z:
Expression and antimicrobial character of cells transfected with
human β-defensin-3 against periodontitis-associated microbiota in
vitro. Mol Med Rep. 16:2455–2460. 2017.PubMed/NCBI
|
18
|
Pihlstrom BL, Michalowicz BS and Johnson
NW: Periodontal diseases. Lancet. 366:1809–1820. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang HL, Greenwell H, Fiorellini J,
Giannobile W, Offenbacher S, Salkin L, Townsend C, Sheridan P and
Genco RJ: Research, Science and Therapy Committee: Periodontal
regeneration. J Periodontol. 76:1601–1622. 2005.PubMed/NCBI
|
20
|
Rios HF, Lin Z, Oh B, Park CH and
Giannobile WV: Cell- and gene-based therapeutic strategies for
periodontal regenerative medicine. J Periodontol. 82:1223–1237.
2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Park JY, Jeon SH and Choung PH: Efficacy
of periodontal stem cell transplantation in the treatment of
advanced periodontitis. Cell Transplant. 20:271–285. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Grant MM, Kolamunne RT, Lock FE, Matthews
JB, Chapple IL and Griffiths HR: Oxygen tension modulates the
cytokine response of oral epithelium to periodontal bacteria. J
Clin Periodontol. 37:1039–1048. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Järvensivu A, Hietanen J, Rautemaa R,
Sorsa T and Richardson M: Candida yeasts in chronic periodontitis
tissues and subgingival microbial biofilms in vivo. Oral Dis.
10:106–112. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mimeault M, Johansson SL, Henichart JP,
Depreux P and Batra SK: Cytotoxic effects induced by docetaxel,
gefitinib, and cyclopamine on side population and nonside
population cell fractions from human invasive prostate cancer
cells. Mol Cancer Ther. 9:617–630. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ouhara K, Komatsuzawa H, Yamada S, Shiba
H, Fujiwara T, Ohara M, Sayama K, Hashimoto K, Kurihara H and Sugai
M: Susceptibilities of periodontopathogenic and cariogenic bacteria
to antibacterial peptides, {beta}-defensins and LL37, produced by
human epithelial cells. J Antimicrob Chemother. 55:888–896. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Xia Z, Zhang C, Zeng Y, Wang T and Ai G:
Transplantation of BMSCs expressing hVEGF165 /hBD3 promotes wound
healing in rats with combined radiation-wound injury. Int Wound J.
11:293–303. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Costalonga M and Herzberg MC: The oral
microbiome and the immunobiology of periodontal disease and caries.
Immunol Lett. 162:22–38. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bissell J, Joly S, Johnson GK, Organ CC,
Dawson D, McCray PB Jr and Guthmiller JM: Expression of
beta-defensins in gingival health and in periodontal disease. J
Oral Pathol Med. 33:278–285. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hosokawa I, Hosokawa Y, Komatsuzawa H,
Goncalves RB, Karimbux N, Napimoga MH, Seki M, Ouhara K, Sugai M,
Taubman MA and Kawai T: Innate immune peptide LL-37 displays
distinct expression pattern from beta-defensins in inflamed
gingival tissue. Clin Exp Immunol. 146:218–225. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shahrokhi S, Ebtekar M, Alimoghaddam K,
Pourfathollah AA, Kheirandish M, Ardjmand A, Shamshiri AR and
Ghavamzadeh A: Substance P and calcitonin gene-related
neuropeptides as novel growth factors for ex vivo expansion of cord
blood CD34(+) hematopoietic stem cells. Growth Factors. 28:66–73.
2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ding G, Liu Y, Wang W, Wei F, Liu D, Fan
Z, An Y, Zhang C and Wang S: Allogeneic periodontal ligament stem
cell therapy for periodontitis in swine. Stem Cells. 28:1829–1838.
2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu N, Shi S, Deng M, Tang L, Zhang G, Liu
N, Ding B, Liu W, Liu Y, Shi H, et al: High levels of β-catenin
signaling reduce osteogenic differentiation of stem cells in
inflammatory microenvironments through inhibition of the
noncanonical Wnt pathway. J Bone Miner Res. 26:2082–2095. 2011.
View Article : Google Scholar : PubMed/NCBI
|