1
|
McAlindon TE, Bannuru RR, Sullivan MC,
Arden NK, Berenbaum F, Bierma-Zeinstra SM, Hawker GA, Henrotin Y,
Hunter DJ, Kawaguchi H, et al: OARSI guidelines for the
non-surgical management of knee osteoarthritis. Osteoarthritis
Cartilage. 22:363–388. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Vos T, Flaxman AD, Naghavi M, Lozano R,
Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V,
et al: Years lived with disability (YLDs) for 1160 sequelae of 289
diseases and injuries 1990–2010: A systematic analysis for the
global burden of disease study 2010. Lancet. 380:2163–2196. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Carr AJ, Robertsson O, Graves S, Price AJ,
Arden NK, Judge A and Beard DJ: Knee replacement. Lancet.
379:1331–1340. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bijlsma JW, Berenbaum F and Lafeber FP:
Osteoarthritis: An update wit relevance for clinical practice.
Lancet. 377:2115–2126. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Van den Berg WB: Osteoarthritis year 2010
in review: Pathomechanisms. Osteoarthritis Cartilage. 19:338–341.
2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
de Caestecker M: The transforming growth
factor-beta superfamily of receptors. Cytokine Growth Factor Rev.
15:1–11. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Galera P, Vivien D, Pronost S, Bonaventure
J, Redini F, Loyau G and Pujol JP: Transforming growth factor-beta
1 (TGFbeta 1) up-regulation of collagen type II in primary cultures
of rabbit articular chondrocytes (RAC) involves increased mRNA
levels without affecting mRNA stability and procollagen processing.
J Cell Physiol. 153:596–606. 1992. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shen J, Li J, Wang B, Jin H, Wang M, Zhang
Y, Yang Y, Im HJ, O'Keefe R and Chen D: Deletion of the
transforming growth factor β receptor type II gene in articular
chondrocytes leads to a progressive osteoarthritis-like phenotype
in mice. Arthritis Rheum. 65:3107–3119. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Massicotte F, Lajeunesse D, Benderdour M,
Pelletier JP, Hilal G, Duval N and Martel-Pelletier J: Can altered
production of interleukin-1β, interleukin-6, transforming growth
factor-β and prostaglandin E (2) by isolated human subchondral
osteoblasts identify two subgroups of osteoarthritic patients.
Osteoarthritis Cartilage. 10:491–500. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pombo-Suarez M, Castano-Oreja MT, Calaza
M, Gomez-Reino J and Gonzalez A: Differential upregulation of the
three transforming growth factor beta isoforms in human
osteoarthritic cartilage. Ann Rheum Dis. 68:568–571. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Moldovan F, Pelletier JP, Hambor J,
Cloutier JM and Martel-Pelletier J: Collagenase-3 (matrix
metalloprotease 13) is preferentially localized in the deep layer
of human arthritic cartilage in situ: In vitro mimicking effect by
transforming growth factor beta. Arthritis Rheum. 40:1653–1661.
1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
van Beuningen HM, Van Der Kraan PM, Arntz
OJ and van den Berg WB: Transforming growth factor-beta 1
stimulates articular chondrocyte proteoglycan synthesis and induces
osteophyte formation in the murine knee joint. Lab Invest.
71:279–290. 1994.PubMed/NCBI
|
13
|
van Beuningen HM, Glansbeek HL, van der
Kraan PM and van den Berg WB: Osteoarthritis-like changes in the
murine knee joint resulting from intra-articular transforming
growth factor-β injections. Osteoarthris Cartilage. 8:25–33. 2000.
View Article : Google Scholar
|
14
|
Pines M and Nagler A: Halofuginone: A
novel antifibrotic therapy. Gen Pharmacol. 30:445–450. 1998.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Pinion JL, Bilgili SF, Eckman MK and Hess
JB: The effects of halofuginone and salinomycin, alone and in
combination, on live performance and skin characteristics of
broilers. Poult Sci. 74:391–397. 1995. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pines M: Targeting TGFβ signaling to
inhibit fibroblasts activation as a therapy for fibrosis and
cancer: Effect of halofuginone. Expert Opin Drug Discov. 3:11–20.
2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pines M: Halofuginone for fibrosis,
regeneration and cancer in the gastrointestinal tract. World J
Gastroenterol. 20:14778–14786. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
McLoon LK: Focusing on fibrosis:
Halofuginone-induced functional improvement in the mdx mouse model
of Duchenne muscular dystrophy. Am J Physiol Heart Circ Physiol.
294:H1505–H1507. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pines M, Snyder D, Yarkoni S and Nagler A:
Halofuginone to treat fibrosis in chronic graft-versus-host disease
and scleroderma. Biol Blood Marrow Transplant. 9:417–425. 2003.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Pritzker KP, Gay S, Jimenez SA, Ostergaard
K, Pelletier JP, Revell PA, Salter D and van den Berg WB:
Osteoarthritis cartilage histopathology: Grading and staging.
Osteoarthritis Cartilage. 14:13–29. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Robinson WH, Lepus CM, Wang Q, Raghu H,
Mao R, Lindstrom TM and Sokolove J: Low-grade inflammation as a key
mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol.
12:580–592. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Goldring SR and Golding MB: Changes in the
osteochondral unit during osteoarthritis: Structure, function and
cartilage-bone crosstalk. Nat Rev Rheumatol. 12:632–644. 2016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lories RJ and Luyten FP: The
bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol. 7:43–49.
2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Madry H, van Dijk CN and Mueller-Gerbl M:
The basic science of the subchondral bone. Knee Surg Sports
Traumatol Arthrosc. 18:419–433. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Luyten FP, Lories RJ, Verschueren P, de
Vlam K and Westhovens R: Contemporaty concepts of inflammation,
damage and repair in rheumatic disease. Best Pract Res Clin
Rheumatol. 20:829–848. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Goldring MB and Goldring SR: Articular
cartilage and subchondral bone in the pathogenesis of
osteoarthritis. Ann N Y Acad Sci. 1192:230–237. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
von der Mark K, Kirsch T, Nerlich A, Kuss
A, Weseloh G, Gluckert K and Stoss H: Type X collagen synthesis in
human osteoarthritic cartilage. Indication of chondrocyte
hypertrophy. Arthritis Rheum. 35:806–811. 1992. View Article : Google Scholar : PubMed/NCBI
|
29
|
Serra R, Johnson M, Filvaroff EH, LaBorde
J, Sheehan DM, Derynck R and Moses HL: Expression of a truncted,
kinase-defective TGF-beta type II receptor in mouse skeletal tissue
promotes terminal chondrocyte differentiation and osteoarthritis. J
Cell Biol. 139:541–552. 1997. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang X, Chen L, Xu X, Li C, Huang C and
Deng CX: TGF-beta/Smad3 signals repress chondrocyte hypertrophic
differentiation and are required for maintaining articular
cartilage. J Cell Biol. 153:35–46. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ballock RT, Heydemann A, Wakefield LM,
Flanders KC, Roberts AB and Sporn MB: TGF-beta 1 prevents
hypertrophy of epiphyseal chondrocytes: Regulation of gene
expression for cartilage matrix proteins and metalloproteases. Dev
Biol. 158:414–429. 1993. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dreier R: Hypertrophic differentiation of
chondrocytes in osteoarthritis: The development aspect of
degenerative joint disorders. Arthritis Res Ther. 12:2162010.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Schlaak JF, Pfers I, Zum Buschenfelde KH
Meyer and Marker-Hermann E: Different cytokine profiles in the
synovial fluid of patients with osteoarthritis, rheumatoid
arthritis and seronegative spondylarthropathies. Clin Exp
Rheumatol. 14:155–162. 1996.PubMed/NCBI
|
34
|
Xu L, Golshirazian I, Asbury BJ and Li Y:
Induction of high temperature requirement A1, a serine protease, by
TGF-beta1 in articular chondrocytes of mouse models of OA. Histol
Histopathol. 29:609–618. 2014.PubMed/NCBI
|
35
|
Nagler A and Pines M: Topical treatment of
cutaneous chronic graft versus host disease (cGvHD) with
halofuginone: A novel inhibitor of collagen type I synthesis.
Transplantation. 68:1806–1809. 1999. View Article : Google Scholar : PubMed/NCBI
|
36
|
De Jonge MJ, Dumez H, Verweij J, Yarkoni
S, Snyder D, Lacombe D, Marreaud S, Yamaguchi T, Punt CJ and van
Oosterom A: EORTC New Drug Development Group (NDDG): Phase I and
pharmacokinetic study of halofuginone, an oral quinazolinone
derivative in patients with advanced solid tumours. Eur J Cancer.
42:1768–1774. 2006. View Article : Google Scholar : PubMed/NCBI
|