1
|
Quan T and Fisher GJ: Role of
age-associated alterations of the dermal extracellular matrix
microenvironment in human skin aging: A mini-review. Gerontology.
61:427–434. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Darlenski R, Kazandjieva J and Tsankov N:
Skin barrier function: Morphological basis and regulatory
mechanisms. J Clin Med. 4:36–45. 2011.
|
3
|
Eckert RL and Rorke EA: Molecular biology
of keratinocyte differentiation. Environ Health Perspect.
80:109–116. 1989. View Article : Google Scholar : PubMed/NCBI
|
4
|
Varani J, Dame MK, Rittie L, Fligiel SE,
Kang S, Fisher GJ and Voorhees JJ: Decreased collagen production in
chronologically aged skin: Roles of age-dependent alteration in
fibroblast function and defective mechanical stimulation. Am J
Pathol. 168:1861–1868. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wulf HC, Sandby-Møller J, Kobayasi T and
Gniadecki R: Skin aging and natural photoprotection. Micron.
35:185–191. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Egbert M, Ruetze M, Sattler M, Wenck H,
Gallinat S, Lucius R and Weise JM: The matricellular protein
periostin contributes to proper collagen function and is
downregulated during skin aging. J Dermatol Sci. 73:40–48. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Farage MA, Miller KW, Elsner P and Maibach
HI: Characteristics of the aging skin. Adv Wound Care (New
Rochelle). 2:5–10. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Debacq-Chainiaux F, Leduc C, Verbeke A and
Toussaint O: UV stress and aging. Dermatoendocrinol. 4:236–240.
2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Katiyar SK and Mukhtar H: Green tea
polyphenol (−)-epigallocatechin-3-gallate treatment to mouse skin
prevents UVB-induced infiltration of leukocytes, depletion of
antigenpresenting cells, and oxidative stress. J Leukoc Biol.
69:719–726. 2001.PubMed/NCBI
|
10
|
Wlaschek M, Tantcheva-Poór I, Naderi L, Ma
W, Schneider LA, Razi-Wolf Z, Schüller J and Scharffetter-Kochanek
K: Solar UV irradiation and dermal photoaging. J Photochem
Photobiol B. 63:41–51. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fisher GJ, Kang S, Varani J, Bata-Csorgo
Z, Wan Y, Datta S and Voorhees JJ: Mechanisms of photoaging and
chronological skin aging. Arch Dermatol. 138:1462–1470. 2002.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Shindo Y, Witt E and Packer L: Antioxidant
defense mechanisms in murine epidermis and dermis and their
responses to ultraviolet light. J Invest Dermatol. 100:260–265.
1993. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lee S, Shin S, Kim H, Han S and Kim K,
Kwon J, Kwak JH, Lee CK, Ha NJ, Yim D and Kim K: Anti-inflammatory
function of arctiin by inhibiting COX-2 expression via NF-κB
pathways. J Inflamm (Lond). 8:162011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu JG, Wu JZ, Sun LN, Han T, Du J, Ye Q,
Zhang H and Zhang YG: Ameliorative effects of arctiin from Arctium
lappa on experimental glomerulonephritis in rats. Phytomedicine.
16:1033–1041. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Knott A, Reuschlein K, Mielke H, Wensorra
U, Mummert C, Koop U, Kausch M, Kolbe L, Peters N, Stäb F, et al:
Natural Arctium lappa fruit extract improves the clinical signs of
aging skin. J Cosmet Dermatol. 7:281–289. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cha HJ, Lee GT, Lee KS, Lee KK, Hong JT,
Lee NK, Kim SY, Lee BM, An IS, Hahn HJ, et al: Photoprotective
effect of arctiin against ultraviolet B-induced damage in HaCaT
keratinocytes is mediated by microRNA expression changes. Mol Med
Rep. 10:1363–1370. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Syed DN, Khan MI, Shabbir M and Mukhtar H:
MicroRNAs in skin response to UV radiation. Curr Drug Targets.
14:1128–1134. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Honda N, Jinnin M, Kajihara I, Makino T,
Makino K, Masuguchi S, Fukushima S, Okamoto Y, Hasegawa M, Fujimoto
M and Ihn H: TGF-β-mediated down-regulation of microRNA-196a
contributes to the constitutive upregulated type I collagen
expression in scleroderma dermal fibroblasts. J Immunol.
188:3323–3331. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yamauchi M, Prisayanh P, Haque Z and
Woodley DT: Collagen cross-linking in sun-exposed and unexposed
sites of aged human skin. J Invest Dermatol. 97:938–941. 1991.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Sohal RS and Weindruch R: Oxidative
stress, caloric restriction, and aging. Science. 273:59–63. 1996.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Benedetto AV: The environment and skin
aging. Clinics Derm. 16:129–139. 1998. View Article : Google Scholar
|
22
|
Kwon DN, Chang BS and Kim JH: MicroRNA
dysregulation in liver and pancreas of CMP-Neu5Ac hydroxylase null
mice disrupts insulin/PI3K-AKT signaling. Biomed Res Int.
2014:2363852014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Al-Gubory KH, Fowler PA and Garrel C: The
roles of cellular reactive oxygen species, oxidative stress and
antioxidants in pregnancy outcomes. Int J Biochem Cell Biol.
42:1634–1650. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lucas K and Raikhel AS: Insect microRNAs:
Biogenesis, expression profiling and biological functions. Insect
Biochem Mol Biol. 43:24–38. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jung HJ and Suh Y: MicroRNA in aging: From
discovery to biology. Curr Genomics. 13:548–557. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Banerjee J, Chan YC and Sen CK: MicroRNAs
in skin and wound healing. Physiol Genomics. 43:543–556. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 9:597–610. 2010.
|
28
|
Greussing R, Hackl M, Charoentong P, Pauck
A, Monteforte R, Cavinato M, Hofer E, Scheideler M, Neuhaus M,
Micutkova L, et al: Identification of microRNA-mRNA functional
interactions in UVB-induced senescence of human diploid
fibroblasts. BMC Genomics. 14:2242013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yi R and Fuchs E: MicroRNA-mediated
control in the skin. Cell Death Differ. 17:229–235. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Hildebrand J, Rütze M, Walz N, Gallinat S,
Wenck H, Deppert W, Grundhoff A and Knott A: A comprehensive
analysis of microRNA expression during human keratinocyte
differentiation in vitro and in vivo. J Invest Dermatol. 13:20–29.
2011. View Article : Google Scholar
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Matsuzaki Y, Koyama M, Hitomi T, Yokota T,
Kawanaka M, Nishikawa A, Germain D and Sakai T: Arctiin induces
cell growth inhibition through the down-regulation of cyclin D1
expression. Oncol Rep. 19:721–727. 2008.PubMed/NCBI
|
33
|
Hayashi K, Narutaki K, Nagaoka Y, Hayashi
T and Uesato S: Therapeutic effect of arctiin and arctigenin in
immunocompetent and immunocompromised mice infected with influenza
A virus. Biol Pharm Bull. 33:1199–1205. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Binic I, Lazarevic V, Ljubenovic M, Mojsa
J and Sokolovic D: Skin ageing: Natural weapons and strategies.
Evid Based Complement Alternat Med. 2013:8272482013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Baohua Y and Li L: Effects of SIRT6
silencing on collagen metabolism in human dermal fibroblasts. Cell
Biol Int. 36:105–108. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tilstra JS, Clauson CL, Niedernhofer LJ
and Robbins PD: NF-κB in aging and disease. Aging Dis. 2:449–465.
2011.PubMed/NCBI
|
37
|
Osorio FG, López-Otín C and Freije JM:
NF-kB in premature aging. Aging (Albany NY). 4:726–727. 2012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Tanaka K, Asamitsu K, Uranishi H,
Iddamalgoda A, Ito K, Kojima H and Okamoto T: Protecting skin
photoaging by NF-kappaB inhibitor. Curr Drug Metab. 11:431–435.
2010. View Article : Google Scholar : PubMed/NCBI
|