1
|
Selwitz RH, Ismail AI and Pitts NB: Dental
caries. Lancet. 369:51–59. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Marsh PD: Microbial ecology of dental
plaque and its significance in health and disease. Adv Dent Res.
8:263–271. 1994. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dye BA and Thornton-Evans G: Trends in
oral health by poverty status as measured by Healthy People 2010
objectives. Public Health Rep. 125:817–830. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Capurro DA, Iafolla T, Kingman A,
Chattopadhyay A and Garcia I: Trends in income-related inequality
in untreated caries among children in the United States: Findings
from NHANES I NHANES III and NHANES 1999–2004. Community Dent Oral
Epidemiol. 43:500–510. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Qi X: Report of the third national oral
health survey in China. People's Med Publ House; Beijing: pp.
60–61. 2008, (In Chinese).
|
6
|
Guo L, McLean JS, Lux R, He X and Shi W:
The well-coordinated linkage between acidogenicity and aciduricity
via insoluble glucans on the surface of Streptococcus mutans. Sci
Rep. 5:180152015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Quivey RG, Kuhnert WL and Hahn K: Genetics
of acid adaptation in oral streptococci. Crit Rev Oral Biol Med.
12:301–314. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Matsui R and Cvitkovitch D: Acid tolerance
mechanisms utilized by Streptococcus mutans. Future Microbiol.
5:403–417. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Loesche WJ: Role of Streptococcus mutans
in human dental decay. Microbiol Rev. 50:353–380. 1986.PubMed/NCBI
|
10
|
Gross EL, Beall CJ, Kutsch SR, Firestone
ND, Leys EJ and Griffen AL: Beyond Streptococcus mutans: Dental
caries onset linked to multiple species by 16S rRNA community
analysis. PLoS One. 7:e477222012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lemos JA, Quivey RG Jr, Koo H and
Abranches J: Streptococcus mutans: A new Gram-positive paradigm?
Microbiology. 159:436–445. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lévesque CM, Mair RW, Perry JA, Lau PC, Li
YH and Cvitkovitch DG: Systemic inactivation and phenotypic
characterization of two-component systems in expression of
Streptococcus mutans virulence properties. Lett Appl Microbiol.
45:398–404. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Song L, Sudhakar P, Wang W, Conrads G,
Brock A, Sun J, Wagner-Döbler I and Zeng AP: A genome-wide study of
two-component signal transduction systems in eight newly sequenced
mutans streptococci strains. BMC Genomics. 13:1282012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li YH, Lau PC, Tang N, Svensäter G, Ellen
RP and Cvitkovitch DG: Novel two-component regulatory system
involved in biofilm formation and acid resistance in Streptococcus
mutans. J Bacteriol. 184:6333–6342. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gong Y, Tian XL, Sutherland T, Sisson G,
Mai J, Ling J and Li YH: Global transcriptional analysis of
acid-inducible genes in Streptococcus mutans: Multiple
two-component systems involved in acid adaptation. Microbiology.
155:3322–3332. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Senadheera D, Krastel K, Mair R,
Persadmehr A, Abranches J, Burne RA and Cvitkovitch DG:
Inactivation of VicK affects acid production and acid survival of
Streptococcus mutans. J Bacteriol. 191:6415–6424. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chong P, Drake L and Biswas I: LiaS
regulates virulence factor expression in Streptococcus mutans.
Infect Immun. 76:3093–3099. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ortega AD, Quereda JJ, Pucciarelli MG and
Garcia-del Portillo F: Non-coding RNA regulation in pathogenic
bacteria located inside eukaryotic cells. Front Cell Infect
Microbiol. 4:1622014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gottesman S and Storz G: Bacterial small
RNA regulators: versatile roles and rapidly evolving variations.
Cold Spring Harb Perspect Biol. 3:pii: a0037982011. View Article : Google Scholar
|
20
|
Marx P, Nuhn M, Kovács M, Hakenbeck R and
Brückner R: Identification of genes for small non-coding RNAs that
belong to the regulon of the two-component regulatory system CiaRH
in Streptococcus. BMC Genomics. 11:6612010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Brosse A, Korobeinikova A, Gottesman S and
Guillier M: Unexpected properties of sRNA promoters allow feedback
control via regulation of a two-component system. Nucleic Acids
Res. 44:9650–9666. 2016.PubMed/NCBI
|
22
|
Saxena D, Li Y and Caufield PW:
Identification of unique bacterial gene segments from Streptococcus
mutans with potential relevance to dental caries by subtraction DNA
hybridization. J Clin Microbiol. 43:3508–3511. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yu LX, Tao Y, Qiu RM, Zhou Y, Zhi QH and
Lin HC: Genetic polymorphisms of the sortase A gene and
social-behavioural factors associated with caries in children: A
case-control study. BMC Oral Health. 15:542015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Stipp RN, Goncalves RB, Hofling JF, Smith
DJ and Mattos-Graner RO: Transcriptional analysis of gtfB, gtfC,
and gbpB and their putative response regulators in several isolates
of Streptococcus mutans. Oral Microbiol Immunol. 23:466–473. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu S, Tao Y, Yu L, Zhuang P, Zhi Q, Zhou
Y and Lin H: Analysis of Small RNAs in Streptococcus mutans under
acid stress-A new insight for caries research. Int J Mol Sci.
17:pii: E15292016. View Article : Google Scholar
|
26
|
Cho SH, Lei R, Henninger TD and Contreras
LM: Discovery of ethanol-responsive small RNAs in Zymomonas
mobilis. Appl Environ Microbiol. 80:4189–4198. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yin H, Hu M, Zhang R, Shen Z, Flatow L and
You M: MicroRNA-217 promotes ethanol-induced fat accumulation in
hepatocytes by down-regulating SIRT1. J Biol Chem. 287:9817–9826.
2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yen YC, Shiah SG, Chu HC, Hsu YM, Hsiao
JR, Chang JY, Hung WC, Liao CT, Cheng AJ, Lu YC and Chen YW:
Reciprocal regulation of microRNA-99a and insulin-like growth
factor I receptor signaling in oral squamous cell carcinoma cells.
Mol Cancer. 13:62014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ogata Y, Matsui S, Kato A, Zhou L,
Nakayama Y and Takai H: MicroRNA expression in inflamed and
noninflamed gingival tissues from Japanese patients. J Oral Sci.
56:253–260. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Eggenhofer F, Tafer H, Stadler PF and
Hofacker IL: RNApredator: Fast accessibility-based prediction of
sRNA targets. Nucleic Acids Res. 39:W149–W154. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xia L, Xia W, Li S, Li W, Liu J, Ding H,
Li J, Li H, Chen Y, Su X, et al: Identification and expression of
small non-coding RNA L10-Leader, in different growth phases of
Streptococcus mutans. Nucleic Acid Ther. 22:177–186.
2012.PubMed/NCBI
|
33
|
Lian C, Sun B, Niu S, Yang R, Liu B, Lu C,
Meng J, Qiu Z, Zhang L and Zhao Z: A comparative profile of the
microRNA transcriptome in immature and mature porcine testes using
Solexa deep sequencing. FEBS J. 279:964–975. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Suntharalingam P, Senadheera MD, Mair RW,
Lévesque CM and Cvitkovitch DG: The LiaFSR system regulates the
cell envelope stress response in Streptococcus mutans. J Bacteriol.
191:2973–2984. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Stubben CJ, Micheva-Viteva SN, Shou Y,
Buddenborg SK, Dunbar JM and Hong-Geller E: Differential expression
of small RNAs from Burkholderia thailandensis in response to
varying environmental and stress conditions. BMC Genomics.
15:3852014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Christiansen JK, Larsen MH, Ingmer H,
Søgaard-Andersen L and Kallipolitis BH: The RNA-binding protein Hfq
of Listeria monocytogenes: Role in stress tolerance and virulence.
J Bacteriol. 186:3355–3362. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bronsard J, Pascreau G, Sassi M, Mauro T,
Augagneur Y and Felden B: sRNA and cis-antisense sRNA
identification in Staphylococcus aureus highlights an unusual sRNA
gene cluster with one encoding a secreted peptide. Sci Rep.
7:45652017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ahn SJ, Lemos JA and Burne RA: Role of
HtrA in growth and competence of Streptococcus mutans UA159. J
Bacteriol. 187:3028–3038. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tremblay YD, Lo H, Li YH, Halperin SA and
Lee SF: Expression of the Streptococcus mutans essential
two-component regulatory system VicRK is pH and growth-phase
dependent and controlled by the LiaFSR three-component regulatory
system. Microbiology. 155:2856–2865. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ahn SJ, Wen ZT and Burne RA: Multilevel
control of competence development and stress tolerance in
Streptococcus mutans UA159. Infect Immun. 74:1631–1642. 2006.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Laux A, Sexauer A, Sivaselvarajah D,
Kaysen A and Brückner R: Control of competence by related
non-coding csRNAs in Streptococcus pneumoniae R6. Front Genet.
6:2462015. View Article : Google Scholar : PubMed/NCBI
|