1
|
Hoeper MM, Bogaard HJ, Condliffe R, Frantz
R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F, et
al: Definitions and diagnosis of pulmonary hypertension. J Am Coll
Cardiol. 62 Suppl 25:D42–D50. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Malenfant S, Margaillan G, Loehr JE,
Bonnet Sb and Provencher S: The emergence of new therapeutic
targets in pulmonary arterial hypertension: From now to the near
future. Expert Rev Respir Med. 7:43–55. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Houtchens J, Martin D and Klinger JR:
Diagnosis and management of pulmonary arterial hypertension.
Pulmonary Med. 2011:1–13. 2011. View Article : Google Scholar
|
4
|
Mam V, Tanbe AF, Vitali SH, Arons E,
Christou HA and Khalil RA: Impaired vasoconstriction and nitric
oxide-mediated relaxation in pulmonary arteries of hypoxia- and
monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Exp
Ther. 332:455–462. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Giaid A and Saleh D: Reduced expression of
endothelial nitric oxide synthase in the lungs of patients with
pulmonary hypertension. N Engl J Med. 333:214–221. 1995. View Article : Google Scholar : PubMed/NCBI
|
6
|
Goldstein JL and Brown MS: Regulation of
the mevalonate pathway. Nature. 343:425–430. 1990. View Article : Google Scholar : PubMed/NCBI
|
7
|
Klinger JR, Abman SH and Gladwin MT:
Nitric oxide deficiency and endothelial dysfunction in pulmonary
arterial hypertension. Am J Respir Crit Care Med. 188:639–646.
2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cai H and Harrison DG: Endothelial
dysfunction in cardiovascular diseases: The role of oxidant stress.
Circ Res. 87:840–844. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dorfmüller P, Chaumais MC, Giannakouli M,
Durand-Gasselin I, Raymond N, Fadel E, Mercier O, Charlotte F,
Montani D, Simonneau G, et al: Increased oxidative stress and
severe arterial remodeling induced by permanent high-flow challenge
in experimental pulmonary hypertension. Respir Res. 12:119–130.
2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rinckel LA, Faris SL, Hitt ND and
Kleinberg ME: Rac1 disrupts p67phox:p40phox binding: A novel role
for rac in NADPH oxidase activation. Biochem Biophys Res Commun.
263:118–122. 1999. View Article : Google Scholar : PubMed/NCBI
|
11
|
Takai Y, Sasaki T and Matozaki T: Small
GTP-binding proteins. Physiol Rev. 81:154–185. 2001.
|
12
|
Allal C, Favre G, Couderc B, Salicio S,
Sixou S, Hamilton AD, Sebti AM, Lajoie-Mazenc I and Pradines A:
RhoA prenylation is required for promotion of cell growth and
transformation and cytoskeleton organization but not for induction
of serum response element transcription. J Biol Chem.
275:31001–31008. 2000. View Article : Google Scholar : PubMed/NCBI
|
13
|
Singh RP, Kumar R and Kapur N: Molecular
regulation of cholesterol biosynthesis: Implications in
carcinogenesis. J Environ Pathol Toxicol Oncol. 22:75–92. 2003.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kinlay S: Potential vascular benefits of
statins. Am J Med. 118 Suppl 12A:S62–S67. 2005. View Article : Google Scholar
|
15
|
Koh KK: Effects of statins on vascular
wall: Vasomotor function, inflammation and plaque stability.
Cardiovasc Res. 47:648–657. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Murata T, Kinoshita K, Hori M, Kuwahara M,
Tsubone H, Karaki H and Ozaki H: Statin protects endothelial nitric
oxide synthase activity in hypoxia-induced pulmonary hypertension.
Arterioscler Thromb Vasc Biol. 25:2335–2342. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Guerard P, Rakotoniaina Z, Goirand Fo,
Rochette L, Dumas M, Lirussi F and Bardou M: The HMG-CoA reductase
inhibitor, pravastatin, prevents the development of
monocrotaline-induced pulmonary hypertension in the rat through
reduction of endothelial cell apoptosis and overexpression of eNOS.
Naunyn Schmiedebergs Arch Pharmacol. 373:401–414. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang FL and Casey PJ: Protein
prenylation: Molecular mechanisms and functional consequences. Annu
Rev Biochem. 65:241–269. 1996. View Article : Google Scholar : PubMed/NCBI
|
19
|
Moores SL, Schaber MD, Mosser SD, Rands E,
O'Hara MB, Garsky VM, Marshall MS, Pompliano DL and Gibbs JB:
Sequence dependence of protein isoprenylation. J Biol Chem.
266:14603–14610. 1991.PubMed/NCBI
|
20
|
Lőrincz ÁM, Szarvas G, Smith SM and Ligeti
E: Role of Rac GTPase activating proteins in regulation of NADPH
oxidase in human neutrophils. Free Radic Biol Med. 68:65–71. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Seno T, Inoue N, Gao D, Okuda M, Sumi Y,
Matsui K, Yamada S, Hirata KI, Kawashima S, Tawa R, et al:
Involvement of NADH/NADPH oxidase in human platelet ROS production.
Thromb Res. 103:399–409. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Machado RF, Nerkar MV Londhe, Dweik RA,
Hammel J, Janocha A, Pyle J, Laskowski D, Jennings C, Arroliga AC
and Erzurum SC: Nitric oxide and pulmonary arterial pressures in
pulmonary hypertension. Free Radic Biol Med. 37:1010–1017. 2004.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Crosswhite P and Sun Z: Mol mechanisms of
pulmonary arterial remodeling. Mol Med. 20:191–201. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Yerly P, Prella M and Aubert JD: Current
management of pulmonary arterial hypertension. Swiss Med Wkly.
146:w143052016.PubMed/NCBI
|
25
|
Guzowski DE and Salgado ED: Changes in
main pulmonary artery of rats with monocrotaline-induced pulmonary
hypertension. Arch Pathol Lab Med. 111:741–745. 1987.PubMed/NCBI
|
26
|
Anand V, Garg S, Duval S and Thenappan T:
A systematic review and meta-analysis of trials using statins in
pulmonary arterial hypertension. Pulm Circ. 6:295–301. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Faust JR, Goldstein JL and Brown MS:
Synthesis of ubiquinone and cholesterol in human fibroblasts:
Regulation of a branched pathway. Arch Biochem Bioph. 192:86–99.
1979. View Article : Google Scholar
|
28
|
Brown MS and Goldstein JL: Multivalent
feedback regulation of HMG CoA reductase, a control mechanism
coordinating isoprenoid synthesis and cell growth. J Lipid Res.
21:505–517. 1980.PubMed/NCBI
|
29
|
Laezza C, Notarnicola M, Caruso MG, Messa
C, Macchia M, Bertini S, Minutolo F, Portella G, Fiorentino L,
Stingo S and Bifulco M: N6-isopentenyladenosine arrests tumor cell
proliferation by inhibiting farnesyl diphosphate synthase and
protein prenylation. FASEB J. 20:412–418. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Park SB, Park SH, Kang YK and Chung CK:
The time-dependent effect of ibandronate on bone graft remodeling
in an ovariectomized rat spinal arthrodesis model. Spine J.
14:1748–1757. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li L, Chen GP, Yang Y, Ye Y, Yao L and Hu
SJ: Chronic inhibition of farnesyl pyrophosphate synthase
attenuates cardiac hypertrophy and fibrosis in spontaneously
hypertensive rats. Biochem Pharmacol. 79:399–406. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sun S and McKenna CE: Farnesyl
pyrophosphate synthase modulators: A patent review (2006–2010).
Expert Opin Ther Pat. 21:1433–1451. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bajaj A, Zheng Q, Adam A, Vincent P and
Pumiglia K: Activation of endothelial ras signaling bypasses
senescence and causes abnormal vascular morphogenesis. Cancer Res.
70:3803–3812. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wiemer AJ, Wiemer DF and Hohl RJ:
Geranylgeranyl diphosphate synthase: An emerging therapeutic
target. Clin Pharmacol Ther. 90:804–812. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Philips MR and Cox AD:
Geranylgeranyltransferase I as a target for anti-cancer drugs. J
Clin Invest. 117:1223–1225. 2007. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Dunford JE, Rogers MJ, Ebetino FH, Phipps
RJ and Coxon FP: Inhibition of protein prenylation by
bisphosphonates causes sustained activation of Rac, Cdc42, and Rho
GTPases. J Bone Miner Res. 21:684–694. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Han J, Jiang DM, Du CQ and Hu SJ:
Alteration of enzyme expressions in mevalonate pathway: Possible
role for cardiovascular remodeling in spontaneously Hypertensive
Rats. Circ J. 75:1409–1417. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hall A: Small GTP-binding proteins and the
regulation of the actin cytoskeleton. Ann Rev Cell Biol. 10:31–54.
1994. View Article : Google Scholar : PubMed/NCBI
|
39
|
Aikawa R, Komuro I, Yanazaki T, Zou Y,
Kudoh S, Zhu W, Kadowaki T and Yazaki Y: Rho family small G
proteins play critical roles in mechanical stress-induced
hypertrophic responses in cardiac myocytes. Circ Res. 84:485–466.
1999. View Article : Google Scholar
|
40
|
Bagrodia S, Dérijard B, Davis RJ and
Cerione RA: Cdc42 and PAK-mediated Signaling Leads to Jun kinase
and p38 mitogen-activated protein kinase activation. J Biol Chem.
270:27995–27998. 1995. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bagrodia S and Cerione RA: PAK to the
future. Trends Cell Biol. 9:350–355. 1999. View Article : Google Scholar : PubMed/NCBI
|
42
|
King AJ, Sun H, Diaz B, Barnard D, Miao W,
Bagrodia S and Marshall MS: The protein kinase Pak3 positively
regulates Raf-1 activity through phosphorylation of serine 338.
Nature. 396:180–183. 1998. View
Article : Google Scholar : PubMed/NCBI
|
43
|
Klemke RL, Cai S, Giannini AL, Gallagher
PJ, de Lanerolle P and Cheresh DA: Regulation of cell motility by
mitogen-activated protein kinase. J Cell Biol. 137:481–492. 1997.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Hunter JJ, Tanaka N, Rockman HA, Ross J
and Chien KR: Ventricular expression of a MLC-2v-ras fusion gene
induces cardiac hypertrophy and selective diastolic dysfunction in
transgenic mice. J Biol Chem. 270:23173–23178. 1995. View Article : Google Scholar : PubMed/NCBI
|
45
|
Norton CE, Broughton BR, Jernigan NL,
Walker BR and Resta TC: Enhanced depolarization-induced pulmonary
vasoconstriction following chronic hypoxia requires EGFR-dependent
activation of NAD(P)H oxidase 2. Antioxid Redox Signal. 18:1777–88.
2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kameshima S, Kazama K, Okada M and
Yamawaki H: Eukaryotic elongation factor 2 kinase mediates
monocrotaline-induced pulmonary arterial hypertension via reactive
oxygen species-dependent vascular remodeling. Am J Physiol Heart
Circ Physiol. 308:H1298–H1305. 2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Manea A: NADPH oxidase-derived reactive
oxygen species: Involvement in vascular physiology and pathology.
Cell Tissue Res. 342:325–339. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sutendra G, Dromparis P, Bonnet S, Haromy
A, McMurtry MS, Bleackley RC and Michelakis ED: Pyruvate
dehydrogenase inhibition by the inflammatory cytokine TNFalpha
contributes to the pathogenesis of pulmonary arterial hypertension.
J Mol Med (Berl). 89:771–783. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Aziz SM, Toborek M, Hennig B, Mattson MP,
Guo H and Lipke DW: Oxidative stress mediates monocrotaline-induced
alterations in tenascin expression in pulmonary artery endothelial
cells. Int J Biochem Cell Biol. 29:775–787. 1997. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chen MJ, Chiang LY and Lai YL: Reactive
oxygen species and substance P in monocrotaline-induced pulmonary
hypertension. Toxicol Appl Pharmacol. 171:165–73. 2001. View Article : Google Scholar : PubMed/NCBI
|
51
|
Herbert JM, Bono F and Savi P: The
mitogenic effec of H2O2 for vascular smooth
muxcle cells is mediated by an increase of the affinity of basid
fibroblast growth factor for its receptor. FEBS Lett. 395:43–47.
1996. View Article : Google Scholar : PubMed/NCBI
|
52
|
Xu W, Kaneko FT, Zheng S, Comhair SA,
Janocha AJ, Goggans T, Thunnissen FB, Farver C, Hazen SL, Jennings
C, et al: Increased arginase II and decreased NO synthesis in
endothelial cells of patients with pulmonary arterial hypertension.
FASEB J. 18:1746–1748. 2004.PubMed/NCBI
|
53
|
Sahara M, Sata M, Morita T, Hirata Y and
Nagai R: Nicorandil attenuates monocrotaline-induced vascular
endothelial damage and pulmonary arterial hypertension. PLoS One.
7:e333672012. View Article : Google Scholar : PubMed/NCBI
|