1
|
Medhora M, Chen Y, Gruenloh S, Harland D,
Bodiga S, Zielonka J, Gebremedhin D, Gao Y, Falck JR, Anjaiah S and
Jacobs ER: 20-HETE increases superoxide production and activates
NAPDH oxidase in pulmonary artery endothelial cells. Am J Physiol
Lung Cell Mol Physiol. 294:L902–L911. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pratt PF, Falck JR, Reddy KM, Kurian JB
and Campbell WB: 20-HETE relaxes bovine coronary arteries through
the release of prostacyclin. Hypertension. 31:237–241. 1998.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu X, Zhao Y, Wang L, Yang X, Zheng Z,
Zhang Y, Chen F and Liu H: Overexpression of cytochrome P450 4F2 in
mice increases 20-hydroxyeicosatetraenoic acid production and
arterial blood pressure. Kidney Int. 75:1288–1296. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wu J, Liu X, Lai G, Yang X, Wang L and
Zhao Y: Synergistical effect of 20-HETE and high salt on NKCC2
protein and blood pressure via ubiquitin-proteasome pathway. Hum
Genet. 132:179–187. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Harvey KF, Dinudom A, Cook DI and Kumar S:
The Nedd4-like protein KIAA0439 is a potential regulator of the
epithelial sodium channel. J Biol Chem. 276:8597–8601. 2001.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Rougier JS, van Bemmelen MX, Bruce MC,
Jespersen T, Gavillet B, Apothéloz F, Cordonier S, Staub O, Rotin D
and Abriel H: Molecular determinants of voltage-gated sodium
channel regulation by the Nedd4/Nedd4-like proteins. Am J Physiol
Cell Physiol. 288:C692–C701. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kamynina E, Debonneville C, Bens M,
Vandewalle A and Staub O: A novel mouse Nedd4 protein suppresses
the activity of the epithelial Na+ channel. FASEB J. 15:204–214.
2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Laedermann CJ, Cachemaille M, Kirschmann
G, Pertin M, Gosselin RD, Chang I, Albesa M, Towne C, Schneider BL,
Kellenberger S, et al: Dysregulation of voltage-gated sodium
channels by ubiquitin ligase NEDD4-2 in neuropathic pain. J Clin
Invest. 123:3002–3013. 2013. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Hellwinkel OJ, Asong LE, Rogmann JP,
Sültmann H, Wagner C, Schlomm T and Eichelberg C: Transcription
alterations of members of the ubiquitin-proteasome network in
prostate carcinoma. Prostate Cancer Prostatic Dis. 14:38–45. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kito Y, Bai J, Goto N, Okubo H, Adachi Y,
Nagayama T and Takeuchi T: Pathobiological properties of the
ubiquitin ligase Nedd4L in melanoma. Int J Exp Pathol. 95:24–28.
2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wen H, Lin R, Jiao Y, Wang F, Wang S, Lu
D, Qian J, Jin L and Wang X: Two polymorphisms in NEDD4L gene and
essential hypertension in Chinese Hans-a population-based
case-control study. Clin Exp Hypertens. 30:87–94. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Whitby FG, Xia G, Pickart CM and Hill CP:
Crystal structure of the human ubiquitin-like protein NEDD8 and
interactions with ubiquitin pathway enzymes. J Biol Chem.
273:34983–34991. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang DT, Hunt HW, Zhuang M, Ohi MD,
Holton JM and Schulman BA: Basis for a ubiquitin-like protein
thioester switch toggling E1-E2 affinity. Nature. 445:394–398.
2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pan ZQ, Kentsis A, Dias DC, Yamoah K and
Wu K: Nedd8 on cullin: Building an expressway to protein
destruction. Oncogene. 23:1985–1997. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xie P, Zhang M, He S, Lu K, Chen Y, Xing
G, Lu Y, Liu P, Li Y, Wang S, et al: The covalent modifier Nedd8 is
critical for the activation of Smurf1 ubiquitin ligase in
tumorigenesis. Nat Commun. 5:37332014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Boh BK, Smith PG and Hagen T:
Neddylation-induced conformational control regulates cullin RING
ligase activity in vivo. J Mol Biol. 409:136–145. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Goldenberg SJ, Cascio TC, Shumway SD,
Garbutt KC, Liu J, Xiong Y and Zheng N: Structure of the
Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the
assembly of the multisubunit cullin-dependent ubiquitin ligases.
Cell. 119:517–528. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kapelari B, Bech-Otschir D, Hegerl R,
Schade R, Dumdey R and Dubiel W: Electron microscopy and
subunit-subunit interaction studies reveal a first architecture of
COP9 signalosome. J Mol Biol. 300:1169–1178. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wei W, Guo H, Liu X, Zhang H, Qian L, Luo
K, Markham RB and Yu XF: A first-in-class NAE inhibitor, MLN4924,
blocks lentiviral infection in myeloid cells by disrupting
neddylation-dependent Vpx-mediated SAMHD1 degradation. J Virol.
88:745–751. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sarantopoulos J, Shapiro GI, Cohen RB,
Clark JW, Kauh JS, Weiss GJ, Cleary JM, Mahalingam D, Pickard MD,
Faessel HM, et al: Phase I study of the investigational
NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in
patients with advanced solid tumors. Clin Cancer Res. 22:847–857.
2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shah JJ, Jakubowiak AJ, O'Connor OA,
Orlowski RZ, Harvey RD, Smith MR, Lebovic D, Diefenbach C, Kelly K,
Hua Z, et al: Phase I study of the novel investigational
NEDD8-activating enzyme inhibitor Pevonedistat (MLN4924) in
patients with relapsed/refractory multiple myeloma or lymphoma.
Clin Cancer Res. 22:34–43. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bornstein G and Grossman C:
COP9-Signalosome deneddylase activity is enhanced by simultaneous
neddylation: Insights into the regulation of an enzymatic protein
complex. Cell Div. 10:52015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu K, Chen A and Pan ZQ: Conjugation of
Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to
promote ubiquitin polymerization. J Biol Chem. 275:32317–32324.
2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kurz T, Ozlü N, Rudolf F, Luke B, Hofmann
K, Hyman AA, Bowerman B and Peter M: The conserved protein
DCN-1/Dcn1p is required for cullin neddylation in C. Elegans and S.
Cerevisiae. Nature. 435:1257–1261. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kurz T, Chou YC, Willems AR,
Meyer-Schaller N, Hecht ML, Tyers M, Peter M and Sicheri F: Dcn1
functions as a scaffold-type E3 ligase for cullin neddylation. Mol
Cell. 29:23–35. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chung D and Dellaire G: The Role of the
COP9 signalosome and neddylation in DNA damage signaling and
repair. Biomolecules. 5:2388–2416. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wu JT, Lin HC, Hu YC and Chien CT:
Neddylation and deneddylation regulate Cul1 and Cul3 protein
accumulation. Nat Cell Biol. 7:1014–1020. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chandran S, Li H, Dong W, Adams C,
Alexandrova L, Chien A, Hallows KR and Bhalla V: Neural precursor
cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2)
regulation by 14-3-3 protein binding at canonical serum and
glucocorticoid kinase 1 (SGK1) phosphorylation sites. J Biol Chem.
286:37830–37840. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bruce MC, Kanelis V, Fouladkou F,
Debonneville A, Staub O and Rotin D: Regulation of Nedd4-2
self-ubiquitination and stability by a PY motif located within its
HECT-domain. Biochem J. 415:155–163. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Singh H and Schwartzman ML: Renal vascular
cytochrome P450-derived eicosanoids in androgen-induced
hypertension. Pharmacol Rep. 60:29–37. 2008.PubMed/NCBI
|
32
|
Mulligan SJ and MacVicar BA: Calcium
transients in astrocyte endfeet cause cerebrovascular
constrictions. Nature. 431:195–199. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nowicki S, Chen SL, Aizman O, Cheng XJ, Li
D, Nowicki C, Nairn A, Greengard P and Aperia A:
20-Hydroxyeicosa-tetraenoic acid (20 HETE) activates protein kinase
C. Role in regulation of rat renal Na+,K+-ATPase. J Clin Invest.
99:1224–1230. 1997. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lai G, Wu J, Liu X and Zhao Y: 20-HETE
induces hyperglycemia through the cAMP/PKA-PhK-GP pathway. Mol
Endocrinol. 26:1907–1916. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yu W, Chen L, Yang YQ, Falck JR, Guo AM,
Li Y and Yang J: Cytochrome P450 ω-hydroxylase promotes
angiogenesis and metastasis by upregulation of VEGF and MMP-9 in
non-small cell lung cancer. Cancer Chemother Pharmacol. 68:619–629.
2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Park F, Sweeney WE, Jia G, Roman RJ and
Avner ED: 20-HETE mediates proliferation of renal epithelial cells
in polycystic kidney disease. J Am Soc Nephrol. 19:1929–1939. 2008.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Escalante B, Erlij D, Falck JR and McGiff
JC: Cytochrome P450-dependent arachidonate metabolites affect renal
transport in the rabbit. J Cardiovasc Pharmacol. 22 Suppl
2:S106–S108. 1993. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ward NC, Chen K, Li C, Croft KD and Keaney
JF Jr: Chronic activation of AMP-activated protein kinase prevents
20-hydroxyeicosatetraenoic acid-induced endothelial dysfunction.
Clin Exp Pharmacol Physiol. 38:328–333. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sodhi K, Wu CC, Cheng J, Gotlinger K,
Inoue K, Goli M, Falck JR, Abraham NG and Schwartzman ML:
CYP4A2-induced hypertension is 20-hydroxyeicosatetraenoic acid- and
angiotensin II-dependent. Hypertension. 56:871–878. 2010.
View Article : Google Scholar : PubMed/NCBI
|