1
|
Chang CC, Chang KC, Tsai SJ, Chang HH and
Lin CP: Neurogenic differentiation of dental pulp stem cells to
neuron-like cells in dopaminergic and motor neuronal inductive
media. J Formos Med Assoc. 113:956–965. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gronthos S, Mankani M, Brahim J, Robey PG
and Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro
and in vivo. Proc Natl Acad Sci USA. 97:pp. 13625–13630. 2000;
View Article : Google Scholar : PubMed/NCBI
|
3
|
Paino F, La Noce M, Tirino V, Naddeo P,
Desiderio V, Pirozzi G, De Rosa A, Laino L, Altucci L and Papaccio
G: Histone deacetylase inhibition with valproic acid downregulates
osteocalcin gene expression in human dental pulp stem cells and
osteoblasts: Evidence for HDAC2 involvement. Stem Cells.
32:279–289. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tatullo M, Marrelli M, Shakesheff KM and
White LJ: Dental pulp stem cells: Function, isolation and
applications in regenerative medicine. J Tissue Eng Regen Med.
9:1205–1216. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zheng Y, Wang XY, Wang YM, Liu XY, Zhang
CM, Hou BX and Wang SL: Dentin regeneration using deciduous pulp
stem/progenitor cells. J Dent Res. 91:676–682. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bakopoulou A, Leyhausen G, Volk J,
Papachristou E, Koidis P and Geurtsen W: Wnt/β-catenin signaling
regulates Dental Pulp Stem Cells' responses to pulp injury by
resinous monomers. Dent Mater. 31:542–555. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cai J, Li W, Su H, Qin D, Yang J, Zhu F,
Xu J, He W, Guo X, Labuda K, et al: Generation of human induced
pluripotent stem cells from umbilical cord matrix and amniotic
membrane mesenchymal cells. J Biol Chem. 285:11227–11234. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Esteban MA, Wang T, Qin B, Yang J, Qin D,
Cai J, Li W, Weng Z, Chen J, Ni S, et al: Vitamin C enhances the
generation of mouse and human induced pluripotent stem cells. Cell
Stem Cell. 6:71–79. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Takahashi K, Tanabe K, Ohnuki M, Narita M,
Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell.
131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Feng R and Wen J: Overview of the roles of
Sox2 in stem cell and development. Biol Chem. 396:883–891. 2015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Thier M, Wörsdörfer P, Lakes YB, Gorris R,
Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nöthen MM,
et al: Direct conversion of fibroblasts into stably expandable
neural stem cells. Cell Stem Cell. 10:473–479. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu P, Cai J, Dong D, Chen Y, Liu X, Wang
Y and Zhou Y: Effects of SOX2 on proliferation, migration and
adhesion of human dental pulp stem cells. PLoS One.
10:e01413462015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang KC, Kitamura Y, Wu CC, Chang HH, Ling
TY and Kuo TF: Tooth germ-like construct transplantation for
whole-tooth regeneration: An in vivo study in the miniature pig.
Artif Organs. 40:E39–E50. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lin X, Dong R, Diao S, Yu G, Wang L, Li J
and Fan Z: SFRP2 enhanced the adipogenic and neuronal
differentiation potentials of stem cells from apical papilla. Cell
Biol Int. 41:534–543. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu F and Millar SE: Wnt/beta-catenin
signaling in oral tissue development and disease. J Dent Res.
89:318–330. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu B, Chen S, Cheng D, Jing W and Helms
JA: Primary cilia integrate hedgehog and Wnt signaling during tooth
development. J Dent Res. 93:475–482. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yuan G, Yang G, Zheng Y, Zhu X, Chen Z,
Zhang Z and Chen Y: The non-canonical BMP and Wnt/β-catenin
signaling pathways orchestrate early tooth development.
Development. 142:128–139. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Maye P, Zheng J, Li L and Wu D: Multiple
mechanisms for Wnt11-mediated repression of the canonical Wnt
signaling pathway. J Biol Chem. 279:24659–24665. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Katoh M: Regulation of WNT signaling
molecules by retinoic acid during neuronal differentiation in NT2
cells: Threshold model of WNT action (Review). Int J Mol Med.
10:683–687. 2002.PubMed/NCBI
|
22
|
Koizumi Y, Kawashima N, Yamamoto M,
Takimoto K, Zhou M, Suzuki N, Saito M, Harada H and Suda H: Wnt11
expression in rat dental pulp and promotional effects of Wnt
signaling on odontoblast differentiation. Congenit Anom (Kyoto).
53:101–108. 2013. View Article : Google Scholar : PubMed/NCBI
|