1
|
Otero C, Peñaloza JP, Rodas PI,
Fernández-Ramires R, Velasquez L and Jung JE: Temporal and spatial
regulation of cAMP signaling in disease: Role of cyclic nucleotide
phosphodiesterases. Fundam Clin Pharmacol. 28:593–607. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Goo L, Luo L, Ju R, Chen C, Zhu L, Li J,
Yu X, Ye C and Zhang D: Carboxyamidotriazole: A novel inhibitor of
both cAMP-phosphodiesterases and cGMP-phosphodiesterases. Eur J
Pharmacol. 746:14–21. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chappie T, Humphrey J, Menniti F and
Schmidt C: PDE10A inhibitors: An assessment of the current CNS drug
discovery landscape. Curr Opin Drug Discov Devel. 12:458–467.
2009.PubMed/NCBI
|
4
|
Chen H, Lester-Zeiner D, Shi J, Miller S,
Glaus C, Hu E, Chen N, Able J, Biorn C, Wong J, et al: AMG 580: A
novel small molecule phosphodiesterase 10A (PDE10A) positron
emission tomography tracer. J Pharmacol Exp Ther. 352:327–337.
2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Siuciak JA, McCarthy SA, Chapin DS,
Fujiwara RA, James LC, Williams RD, Stock JL, McNeish JD, Strick
CA, Menniti FS and Schmidt CJ: Genetic deletion of the
striatum-enriched phosphodiesterase PDE10A: Evidence for altered
striatal function. Neuropharmacology. 51:374–385. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Natesan S, Ashworth S, Nielsen J, Tang SP,
Salinas C, Kealey S, Lauridsen JB, Stensbøl TB, Gunn RN, Rabiner EA
and Kapur S: Effect of chronic antipsychotic treatment on striatal
phosphodiesterase 10A levels: A [(1)(1)C]MP-10 PET rodent imaging
study with ex vivo confirmation. Transl Psychiatry. 4:e3762014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Bartolomé-Nebreda JM, Alonso DDS, Artola
M, Delgado F, Delgado Ó, Martín-Martín ML, Martínez-Viturro CM,
Pena MÁ, Tong HM, Van Gool M, et al: Identification of a novel
orally bioavailable phosphodiesterase 10A (PDE10A) inhibitor with
efficacy in animal models of schizophrenia. J Med Chem. 58:978–993.
2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rahimi R, Ghiasi S, Azimi H, Fakhari S and
Abdollahi M: A review of the herbal phosphodiesterase inhibitors;
future perspective of new drugs. Cytokine. 49:123–129. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Bai L, Zhu LY, Yang BS, Shi LJ, Liu Y,
Jiang AM, Zhao LL, Song G and Liu TF: Antitumor and
immunomodulating activity of a polysaccharide from Sophora
flavescens Ait. Int J Biol Macromol. 51:705–709. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang N, Liang B, Srivastava K, Zeng J,
Zhan J, Brown L, Sampson H, Goldfarb J, Emala C and Li XM: The
Sophora flavescens flavonoid compound trifolirhizin inhibits
acetylcholine induced airway smooth muscle contraction.
Phytochemistry. 95:259–267. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sim KM, Kim KH, Hwang GB, Seo S, Bae GN
and Jung JH: Development and evaluation of antimicrobial activated
carbon fiber filters using Sophora flavescens nanoparticles. Sci
Total Environ. 493:291–297. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zheng K, Li C, Shan X, Liu H, Fan W and
Wang Z: A study on isolation of chemical constituents from Sophora
flavescens Ait. and their anti-glioma effects. Afr J Tradit
Complement Altern Med. 11:156–160. 2013.PubMed/NCBI
|
13
|
He X, Fang J, Huang L, Wang J and Huang X:
Sophora flavescens Ait: Traditional usage, phytochemistry and
pharmacology of an important traditional Chinese medicine. J
Ethnopharmacol. 172:10–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang W, You RL, Qin WJ, Hai LN, Fang MJ,
Huang GH, Kang RX, Li MH, Qiao YF, Li JW and Li AP: Anti-tumor
activities of active ingredients in Compound Kushen Injection. Acta
Pharmacol Sin. 36:676–679. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu L, Pan QX, Zhang XJ, Xu YM, Chu YJ,
Liu N, Lv P, Zhang GX and Kan QC: Protective effects of matrine on
experimental autoimmune encephalomyelitis via regulation of ProNGF
and NGF signaling. Exp Mol Pathol. 100:337–343. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhou Y, Wu Y, Deng L, Chen L, Zhao D, Lv
L, Chen X, Man J, Wang Y, Shan H and Lu Y: The alkaloid matrine of
the root of Sophora flavescens prevents arrhythmogenic effect of
ouabain. Phytomedicine. 21:931–935. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Han R, Takahashi H, Nakamura M, Bunsupa S,
Yoshimoto N, Yamamoto H, Suzuki H, Shibata D, Yamazaki M and Saito
K: Transcriptome analysis of nine tissues to discover genes
involved in the biosynthesis of active ingredients in Sophora
flavescens. Biol Pharm Bull. 38:876–883. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu C, Yang N, Song Y, Wang L, Zi J, Zhang
S, Dunkin D, Busse P, Weir D, Tversky J, et al: Ganoderic acid C1
isolated from the anti-asthma formula, ASHMI™ suppresses
TNF-α production by mouse macrophages and peripheral blood
mononuclear cells from asthma patients. Int Immunopharmacol.
27:224–231. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhao FC, Li H, Chen LM, Gao HM, Zhang QW,
Wang ZM and Wu PE: Study on quality standard of Sophora flavescens
root extract. Zhongguo Zhong Yao Za Zhi. 40:245–250. 2015.(In
Chinese). PubMed/NCBI
|
20
|
Asproni B, Murineddu G, Pau A, Pinna GA,
Langgård M, Christoffersen CT, Nielsen J and Kehler J: Synthesis
and SAR study of new phenylimidazole-pyrazolo [1,5-c]quinazolines
as potent phosphodiesterase 10A inhibitors. Bioorg Med Chem.
19:642–649. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kehler J, Ritzen A, Langgård M, Petersen
SL, Farah MM, Bundgaard C, Christoffersen CT, Nielsen J and Kilburn
JP: Triazoloquinazolines as a novel class of phosphodiesterase 10A
(PDE10A) inhibitors. Bioorg Med Chem Lett. 21:3738–3742. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Bauer U, Giordanetto F, Bauer M, O'Mahony
G, Johansson KE, Knecht W, Hartleib-Geschwindner J, Carlsson ET and
Enroth C: Discovery of 4-hydroxy-1,6-naphthyridine-3-carbonitrile
derivatives as novel PDE10A inhibitors. Bioorg Med Chem Lett.
22:1944–1948. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hu E, Kunz RK, Rumfelt S, Chen N, Bürli R,
Li C, Andrews KL, Zhang J, Chmait S, Kogan J, et al: Discovery of
potent, selective, and metabolically stable 4-(pyridin-3-yl)
cinnolines as novel phosphodiesterase 10A (PDE10A) inhibitors.
Bioorg Med Chem Lett. 22:2262–2265. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Malamas MS, Stange H, Schindler R, Lankau
HJ, Grunwald C, Langen B, Egerland U, Hage T, Ni Y, Erdei J, et al:
Novel triazines as potent and selective phosphodiesterase 10A
inhibitors. Bioorg Med Chem Lett. 22:5876–5884. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Helal CJ, Kang Z, Hou X, Pandit J, Chappie
TA, Humphrey JM, Marr ES, Fennell KF, Chenard LK, Fox C, et al: Use
of structure-based design to discover a potent, selective, in vivo
active phosphodiesterase 10A inhibitor lead series for the
treatment of schizophrenia. J Med Chem. 54:4536–4547. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang Z, Lu X, Xu J, Rothfuss J, Mach RH
and Tu Z: Synthesis and in vitro evaluation of new analogues as
inhibitors for phosphodiesterase 10A. Eur J Med Chem. 46:3986–3995.
2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ho GD, Yang SW, Smotryski J, Bercovici A,
Nechuta T, Smith EM, McElroy W, Tan Z, Tulshian D, McKittrick B, et
al: The discovery of potent, selective, and orally active
pyrazoloquinolines as PDE10A inhibitors for the treatment of
Schizophrenia. Bioorg Med Chem Lett. 22:1019–1022. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang X, Xiang Y, Ren Z, Zhang Y and Qiao
Y: Rational questing for inhibitors of endothelin converting
enzyme-1 from Salvia miltiorrhiza by combining ligand-and
structure-based virtual screening. Canadian J Chem. 91:448–456.
2013. View Article : Google Scholar
|
29
|
Wang X, Zhang Y, Liu Q, Ai Z, Zhang Y,
Xiang Y and Qiao Y: Discovery of dual ETA/ETB receptor antagonists
from traditional chinese herbs through in silico and in vitro
screening. Int J Mol Sci. 17:3892016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang X, Zhang Y, Yang Y, Wu X, Fan H and
Qiao Y: Identification of berberine as a direct thrombin inhibitor
from traditional Chinese medicine through structural, functional
and binding studies. Sci Rep. 7:440402017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Luo C, Wang X, An C, Hwang CF, Miao W,
Yang L, Xu M, Bai A and Deng S: Molecular inhibition mechanisms of
cell migration and invasion by coix polysaccharides in A549 NSCLC
cells via targeting S100A4. Mol Med Rep. 15:309–316. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen YX, Li GZ, Zhang B, Xia ZY and Zhang
M: Molecular evaluation of herbal compounds as potent inhibitors of
acetylcholinesterase for the treatment of Alzheimer's disease. Mol
Med Rep. 14:446–452. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang X, Ren Z, He Y, Xiang Y, Zhang Y and
Qiao Y: A combination of pharmacophore modeling, molecular docking
and virtual screening for iNOS inhibitors from Chinese herbs.
Biomed Mater Eng. 24:1315–1322. 2014.PubMed/NCBI
|
34
|
Chappie TA, Humphrey JM, Allen MP, Estep
KG, Fox CB, Lebel LA, Liras S, Marr ES, Menniti FS, Pandit J, et
al: Discovery of a series of 6,7-dimethoxy-4-pyrrolidylquinazoline
PDE10A inhibitors. J Med Chem. 50:182–185. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mobley DL and Dill KA: Binding of
small-molecule ligands to proteins: ‘What you see’ is not always
‘what you get’. Structure. 17:489–498. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Laskowski RA and Swindells MB: LigPlot+:
Multiple ligand-protein interaction diagrams for drug discovery. J
Chem Inf Model. 51:2778–2786. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nikaido T, Ohmoto T, Kinoshita T, Sankawa
U, Delle Monache F, Botta B, Tomimori T, Miyaichi Y, Shirataki Y,
Yokoe I, et al: Inhibition of adenosine 3′,5′-cyclic monophosphate
phosphodiesterase by flavonoids. III. Chem Pharm Bull (Tokyo).
37:1392–1395. 1989. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jeong GS, Li B, Lee DS, Byun E, An RB, Pae
HO, Chung HT, Youn KH and Kim YC: Lavandulyl flavanones from
Sophora flavescens protect mouse hippocampal cells against
glutamate-induced neurotoxicity via the induction of heme
oxygenase-1. Biol Pharm Bull. 31:1964–1967. 2008. View Article : Google Scholar : PubMed/NCBI
|