Biological functions and role of CCN1/Cyr61 in embryogenesis and tumorigenesis in the female reproductive system (Review)
- Authors:
- Rui Yang
- Ying Chen
- Daozhen Chen
-
Affiliations: Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China - Published online on: October 26, 2017 https://doi.org/10.3892/mmr.2017.7880
- Pages: 3-10
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lau LF and Nathans D: Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J. 4:3145–3151. 1985.PubMed/NCBI | |
O'Brien TP, Yang GP, Sanders L and Lau LF: Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol. 10:3569–3577. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bork P: The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett. 327:125–130. 1993. View Article : Google Scholar : PubMed/NCBI | |
Jay P, Bergé-Lefranc JL, Marsollier C, Méjean C, Taviaux S and Berta P: The human growth factor-inducible immediate early gene, CYR61, maps to chromosome 1p. Oncogene. 14:1753–1757. 1997. View Article : Google Scholar : PubMed/NCBI | |
Borkham-Kamphorst E, Schaffrath C, Van de Leur E, Haas U, Tihaa L, Meurer SK, Nevzorova YA, Liedtke C and Weiskirchen R: The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling. Biochim Biophys Acta. 1843:902–914. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen Y and Du XY: Functional properties and intracellular signaling of CCN1/Cyr61. J Cell Biochem. 100:1337–1345. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chin LH, Hsu SP, Zhong WB and Liang YC: Involvement of cysteine-rich protein 61 in the epidermal growth factor-induced migration of human anaplastic thyroid cancer cells. Mol Carcinog. 55:622–632. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rachfal AW and Brigstock DR: Structural and functional properties of CCN proteins. Vitam Horm. 70:69–103. 2005. View Article : Google Scholar : PubMed/NCBI | |
Berschneider B and Königshoff M: WNT1 inducible signaling pathway protein 1 (WISP1): A novel mediator linking development and disease. Int J Biochem Cell Biol. 43:306–309. 2011. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Lin A, Shrier E, Lau LF, Grant MB and Chaqour B: Degradome products of the matricellular protein CCN1 as modulators of pathological angiogenesis in the retina. J Biol Chem. 288:23075–23089. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Huo R, Wang L, Zhou Z, Sun Y, Shen B, Wang R and Li N: A novel anti-Cyr61 antibody inhibits breast cancer growth and metastasis in vivo. Cancer Immunol Immunother. 61:677–687. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qin Z, Fisher GJ and Quan T: Cysteine-rich protein 61 (CCN1) domain-specific stimulation of matrix metalloproteinase-1 expression through aVb3 integrin in human skin fibroblasts. J Biol Chem. 288:12386–12394. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heng EC, Huang Y, Black SA Jr and Trackman PC: CCN2, connective tissue growth factor, stimulates collagen deposition by gingival fibroblasts via module 3 and alpha6- and beta1 integrins. J Cell Biochem. 98:409–420. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kireeva ML, Lam SC and Lau LF: Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem. 273:3090–3096. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Chen CC and Lau LF: Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem. 275:24953–24961. 2000. View Article : Google Scholar : PubMed/NCBI | |
Grzeszkiewicz TM, Lindner V, Chen N, Lam SC and Lau LF: The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology. 143:1441–1450. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schober JM, Chen N, Grzeszkiewicz TM, Jovanovic I, Emeson EE, Ugarova TP, Ye RD, Lau LF and Lam SC: Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): Immediate-early gene products expressed in atherosclerotic lesions. Blood. 99:4457–4465. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jedsadayanmata A, Chen CC, Kireeva ML, Lau LF and Lam SC: Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem. 274:24321–24327. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kireeva ML, Mo FE, Yang GP and Lau LF: Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol Cell Biol. 16:1326–1334. 1996. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Hao F, An D, Zeng L, Wang Y, Xu X and Cui MZ: The matricellular protein Cyr61 is a key mediator of platelet-derived growth factor-induced cell migration. J Biol Chem. 290:8232–8242. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang TL, Mu N, Gu JT, Shu Z, Zhang K, Zhao JK, Zhang C, Hao Q, Li WN, Zhang WQ, et al: DDR2-CYR61-MMP1 signaling pathway promotes bone erosion in rheumatoid arthritis through regulating migration and invasion of fibroblast-like synoviocytes. J Bone Miner Res. 32:407–418. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Yu G, Shao G, Sun A, Chen M, Yang W and Lin Q: CYR61 (CCN1) is a metastatic biomarker of gastric cardia adenocarcinoma. Oncotarget. 7:31067–31078. 2016. View Article : Google Scholar : PubMed/NCBI | |
Borkham-Kamphorst E, Steffen BT, Van de Leur E, Haas U, Tihaa L, Friedman SL and Weiskirchen R: CCN1/CYR61 overexpression in hepatic stellate cells induces ER stress-related apoptosis. Cell Signal. 28:34–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
You JJ, Yang CH, Yang CM and Chen MS: Cyr61 induces the expression of monocyte chemoattractant protein-1 via the integrin avb3, FAK, PI3K/Akt, and NF-kB pathways in retinal vascular endothelial cells. Cell Signal. 26:133–140. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang YT, Lan Q, Ponsonnet L, Blanquet M, Christofori G, Zaric J and Rüegg C: The matricellular protein CYR61 interferes with normal pancreatic islets architecture and promotes pancreatic neuroendocrine tumor progression. Oncotarget. 7:1663–1674. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li C, Dong X and Gou W: MicroRNA-155 inhibits migration of trophoblast cells and contributes to the pathogenesis of severe preeclampsia by regulating endothelial nitric oxide synthase. Mol Med Rep. 10:550–554. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lau LF: CCN1 and CCN2: Blood brothers in angiogenic action. J Cell Commun Signal. 6:121–123. 2012. View Article : Google Scholar : PubMed/NCBI | |
O'Brien TP and Lau LF: Expression of the growth factor-inducible immediate early gene cyr61 correlates with chondrogenesis during mouse embryonic development. Cell Growth Differ. 3:645–654. 1992.PubMed/NCBI | |
Chijiiwa M, Mochizuki S, Kimura T, Abe H, Tanaka Y, Fujii Y, Shimizu H, Enomoto H, Toyama Y and Okada Y: CCN1 (Cyr61) is overexpressed in human osteoarthritic cartilage and inhibits ADAMTS-4 (Aggrecanase 1) activity. Arthritis Rheumatol. 67:1557–1567. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Park YS, Kim HS, Kim HY, Jin YM, Jung SC, Ryu KH and Jo I: Characterization of long-term in vitro culture-related alterations of human tonsil-derived mesenchymal stem cells: Role for CCN1 in replicative senescence-associated increase in osteogenic differentiation. J Anat. 225:510–518. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Tsang PC, Pate JL and Moses MA: A role for cysteine-rich 61 in the angiogenic switch during the estrous cycle in cows: Regulation by prostaglandin F2alpha. Biol Reprod. 85:261–268. 2011. View Article : Google Scholar : PubMed/NCBI | |
Klein C: Novel equine conceptus?endometrial interactions on Day 16 of pregnancy based on RNA sequencing. Reprod Fertil Dev. May 5–2015.(Epub ahead of print). PubMed/NCBI | |
Chen X, Liu Y, Xu X and Chen H: Correlation of Cyr61 and CTGF in placentas from the late pre-eclamptic pregnancy. J Perinat Med. 40:199–200. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC and Lau LF: CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol. 22:8709–8720. 2002. View Article : Google Scholar : PubMed/NCBI | |
Malik AR, Urbanska M, Gozdz A, Swiech LJ, Nagalski A, Perycz M, Blazejczyk M and Jaworski J: Cyr61, a matricellular protein, is needed for dendritic arborization of hippocampal neurons. J Biol Chem. 288:8544–8559. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kipkeew F, Kirsch M, Klein D, Wuelling M, Winterhager E and Gellhaus A: CCN1 (CYR61) and CCN3 (NOV) signaling drives human trophoblast cells into senescence and stimulates migration properties. Cell Adh Migr. 10:163–178. 2016. View Article : Google Scholar : PubMed/NCBI | |
Draaken M, Proske J, Schramm C, Wittler L, Bartels E, Nöthen MM, Reutter H and Ludwig M: Embryonic expression of the cysteine rich protein 61 (CYR61) gene: A candidate for the development of human epispadias. Birth Defects Res A Clin Mol Teratol. 88:546–550. 2010. View Article : Google Scholar : PubMed/NCBI | |
Romereim SM, Summers AF, Pohlmeier WE, Zhang P, Hou X, Talbott HA, Cushman RA, Wood JR, Davis JS and Cupp AS: Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions. Mol Cell Endocrinol. 439:379–394. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Ni H, Ma XH, Hu SJ, Luan LM, Ren G, Zhao YC, Li SJ, Diao HL, Xu X, et al: Global analysis of differential luminal epithelial gene expression at mouse implantation sites. J Mol Endocrinol. 37:147–161. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Kwok CS, Haththotuwa R, Kotronias RA, Babu A, Fryer AA, Myint PK, Chew-Graham CA and Mamas MA: Pre-eclampsia is associated with a twofold increase in diabetes: A systematic review and meta-analysis. Diabetologia. 59:2518–2526. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hodgins S: Pre-eclampsia as underlying cause for perinatal deaths: Time for action. Glob Health Sci Pract. 3:525–527. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chaiworapongsa T, Chaemsaithong P, Yeo L and Romero R: Pre-eclampsia part 1: Current understanding of its pathophysiology. Nat Rev Nephrol. 10:466–480. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yan G, Diao Z, Sun H and Hu Y: NUR77 inhibits the expression of TIMP2 and increases the migration and invasion of HTR-8/SVneo cells induced by CYR61. Placenta. 33:561–567. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Diao Z, Su L, Sun H, Li R, Cui H and Hu Y: MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol. 202(466): e1–e7. 2010.PubMed/NCBI | |
Huang J, Gao K, Lin J and Wang Q: MicroRNA-100 inhibits osteosarcoma cell proliferation by targeting Cyr61. Tumour Biol. 35:1095–1100. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sarkissyan S, Sarkissyan M, Wu Y, Cardenas J, Koeffler HP and Vadgama JV: IGF-1 regulates Cyr61 induced breast cancer cell proliferation and invasion. PLoS One. 9:e1035342014. View Article : Google Scholar : PubMed/NCBI | |
Johnson SK, Stewart JP, Bam R, Qu P, Barlogie B, van Rhee F, Shaughnessy JD Jr, Epstein J and Yaccoby S: CYR61/CCN1 overexpression in the myeloma microenvironment is associated with superior survival and reduced bone disease. Blood. 124:2051–2060. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shigeoka M, Urakawa N, Nishio M, Takase N, Utsunomiya S, Akiyama H, Kakeji Y, Komori T, Koma Y and Yokozaki H: Cyr61 promotes CD204 expression and the migration of macrophages via MEK/ERK pathway in esophageal squamous cell carcinoma. Cancer Med. 4:437–446. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maity G, Mehta S, Haque I, Dhar K, Sarkar S, Banerjee SK and Banerjee S: Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization. Sci Rep. 4:49952014. View Article : Google Scholar : PubMed/NCBI | |
Arslan AA, Gold LI, Mittal K, Suen TC, Belitskaya-Levy I, Tang MS and Toniolo P: Gene expression studies provide clues to the pathogenesis of uterine leiomyoma: New evidence and a systematic review. Hum Reprod. 20:852–863. 2005. View Article : Google Scholar : PubMed/NCBI | |
Di Tommaso S, Massari S, Malvasi A, Bozzetti MP and Tinelli A: Gene expression analysis reveals an angiogenic profile in uterine leiomyoma pseudocapsule. Mol Hum Reprod. 19:380–387. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wallace K, Chatman K, Spencer SK, Johnson V and LaMarca B: ‘Special research presentation’ endothelin regulation of cyr61 in uterine leiomyomas. Fertil Steril. 102 Suppl:e1062014. View Article : Google Scholar | |
Zhao Y, Li Q, Katzenellenbogen BS, Lau LF, Taylor RN, Bagchi IC and Bagchi MK: Estrogen-induced CCN1 is critical for establishment of endometriosis-like lesions in mice. Mol Endocrinol. 28:1934–1947. 2014. View Article : Google Scholar : PubMed/NCBI | |
Klein R, Stiller S and Gashaw I: Epidermal growth factor upregulates endometrial CYR61 expression via activation of the JAK2/STAT3 pathway. Reprod Fertil Dev. 24:482–489. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chien W, Kumagai T, Miller CW, Desmond JC, Frank JM, Said JW and Koeffler HP: Cyr61 suppresses growth of human endometrial cancer cells. J Biol Chem. 279:53087–53096. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fournier A, Dossus L, Mesrine S, Vilier A, Boutron-Ruault MC, Clavel-Chapelon F and Chabbert-Buffet N: Risks of endometrial cancer associated with different hormone replacement therapies in the E3 N cohort, 1992–2008. Am J Epidemiol. 180:508–517. 2014. View Article : Google Scholar : PubMed/NCBI | |
Joy J: Epigenetic regulation of key genes involved in cervical malignancy. 44:2014. | |
Xie H, Zhao Y, Caramuta S, Larsson C and Lui WO: miR-205 expression promotes cell proliferation and migration of human cervical cancer cells. PLoS One. 7:e469902012. View Article : Google Scholar : PubMed/NCBI | |
Bartel F, Balschun K, Gradhand E, Strauss HG, Dittmer J and Hauptmann S: Inverse expression of cystein-rich 61 (Cyr61/CCN1) and connective tissue growth factor (CTGF/CCN2) in borderline tumors and carcinomas of the ovary. Int J Gynecol Pathol. 31:405–415. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee KB, Byun HJ, Park SH, Park CY, Lee SH and Rho SB: CYR61 controls p53 and NF-kB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells. Cancer Lett. 315:86–95. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Xu T, Tian G and Cui M: Cysteine-rich, angiogenic inducer, 61 expression in patients with ovarian epithelial carcinoma. J Int Med Res. 42:300–306. 2014. View Article : Google Scholar : PubMed/NCBI | |
Po LK and Liu GY: Development of uterine smooth muscle tumour of uncertain malignant potential (STUMP) after laparoscopic myomectomy of an atypical leiomyoma. J Minim Invasive Gynecol. 22:S2312015. View Article : Google Scholar : PubMed/NCBI | |
Joseph NM, Solomon DA, Frizzell N, Rabban JT, Zaloudek C and Garg K: Morphology and immunohistochemistry for 2SC and FH aid in detection of fumarate hydratase gene aberrations in uterine leiomyomas from young patients. Am J Surg Pathol. 39:1529–1539. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kubínová K, Mára M, Horák P and Kuzel D: Genetic factors in etiology of uterine fibroids. Ceska Gynekol. 77:58–60. 2012.In Czech. PubMed/NCBI | |
Hashim Abu H: Aromatase inhibitors for endometriosis-associated infertility; Do we have sufficient evidence? Int J Fertil Steril. 10:270–277. 2016.PubMed/NCBI | |
Bhatti M, Arnold A, Ketheeswaran A, Nesbitt-Hawes E, Deans R and Abbott J: A comparison of examination and surgical findings in women with endometriosis. J Minim Invasive Gynecol. 22:S55–S56. 2015. View Article : Google Scholar : PubMed/NCBI | |
Modotte WP, Modotti CC, Dias DS, Bueloni-Dias FN and Rodrigues NP: Endometriosis and infertility setup during hysterossalpingogram. J Minim Invasive Gynecol. 22:S1782015. View Article : Google Scholar : PubMed/NCBI | |
Cozzolino M, Nasioudis D, Sisti G and Coccia ME: Malignant transformation of vaginal endometriosis-a review of literature. Gynecol Obstet Invest. 82:105–112. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tobiume T, Kotani Y, Takaya H, Nakai H, Tsuji I, Suzuki A and Mandai M: Determinant factors of postoperative recurrence of endometriosis: Difference between endometrioma and pain. Eur J Obstet Gynecol Reprod Biol. 205:54–59. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin K, Zhan H, Ma J, Xu K, Wu R, Zhou C and Lin J: Silencing of SRA1 regulates ER expression and attenuates the growth of stromal cells in ovarian endometriosis. Reprod Sci. 24:836–843. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ohara F, Abdala-Ribeiro HS, Rodrigues FC, Aldrighi JM and Ribeiro PA: Outcomes of laparoscopic treatment of rectosigmoid endometriosis: The linear nodulectomy and the segmental ressection. J Minim Invasive Gynecol. 22:S952015. View Article : Google Scholar : PubMed/NCBI | |
Seyhan A, Ata B and Uncu G: The impact of endometriosis and its treatment on ovarian reserve. Semin Reprod Med. 33:422–428. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gashaw I, Stiller S, Böing C, Kimmig R and Winterhager E: Premenstrual regulation of the pro-angiogenic factor CYR61 in human endometrium. Endocrinology. 149:2261–2269. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yanokura M, Banno K, Iida M, Irie H, Umene K, Masuda K, Kobayashi Y, Tominaga E and Aoki D: MicroRNAS in endometrial cancer: Recent advances and potential clinical applications. EXCLI J. 14:190–198. 2015.PubMed/NCBI | |
Djati Widodo MS and Rifa'i M: Role of MicroRNAs in carcinogenesis that potential for biomarker of endometrial cancer. Ann Med Surg (Lond). 7:9–13. 2016. View Article : Google Scholar : PubMed/NCBI | |
Witek Ł, Janikowski T, Bodzek P, Olejek A and Mazurek U: Expression of tumor suppressor genes related to the cell cycle in endometrial cancer patients. Adv Med Sci. 61:317–324. 2016. View Article : Google Scholar : PubMed/NCBI | |
Parkin DM, Bray F, Ferlay J and Pisani P: Estimating the world cancer burden: Globocan 2000. Int J Cancer. 94:153–156. 2001. View Article : Google Scholar : PubMed/NCBI | |
Long Roche K, Angarita AM, Cristello A, Lippitt M, Haider AH, Bowie JV, Fader AN and Tergas AI: ‘Little big things’: A qualitative study of ovarian cancer survivors and their experiences with the health care system. J Oncol Pract. 12:e974–e980. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yokoyama Y, Futagami M, Watanabe J, Sato N, Terada Y, Miura F, Sugiyama T, Takano T, Yaegashi N, Kojimahara T, et al: Redistribution of resistance and sensitivity to platinum during the observation period following treatment of epithelial ovarian cancer. Mol Clin Oncol. 2:212–218. 2014.PubMed/NCBI |