1
|
Rachner TD, Khosla S and Hofbauer LC:
Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Burge R, Dawson-Hughes B, Solomon DH, Wong
JB, King A and Tosteson A: Incidence and economic burden of
osteoporosis-related fractures in the United States, 2005–2025. J
Bone Miner Res. 22:465–475. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ray NF, Chan JK, Thamer M and Melton LJ
III: Medical expenditures for the treatment of osteoporotic
fractures in the United States in 1995: Report from the National
Osteoporosis Foundation. J Bone Miner Res. 12:24–35. 1997.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Qu B, Ma Y, Yan M, Wu HH, Fan L, Liao DF,
Pan XM and Hong Z: The economic burden of fracture patients with
osteoporosis in western China. Osteoporos Int. 25:1853–1860. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Hernlund E, Svedbom A, Ivergård M,
Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B and Kanis
JA: Osteoporosis in the European Union: Medical management,
epidemiology and economic burden. A report prepared in
collaboration with the International Osteoporosis Foundation (IOF)
and the European Federation of Pharmaceutical Industry Associations
(EFPIA). Arch Osteoporos. 8:1362013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Becker DJ, Kilgore ML and Morrisey MA: The
societal burden of osteoporosis. Curr Rheumatol Rep. 12:186–191.
2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Groneberg DA, Kindermann B, Althammer M,
Klapper M, Vormann J, Littarru GP and Döring F: Coenzyme Q10
affects expression of genes involved in cell signalling, metabolism
and transport in human CaCo-2 cells. Int J Biochem Cell Biol.
37:1208–1218. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Linnane AW, Kios M and Vitetta L: Coenzyme
Q(10)-its role as a prooxidant in the formation of superoxide
anion/hydrogen peroxide and the regulation of the metabolome.
Mitochondrion. 7 Suppl:S51–S61. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Littarru GP and Tiano L: Bioenergetic and
antioxidant properties of coenzyme Q10: Recent developments. Mol
Biotechnol. 37:31–37. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jolliet P, Simon N, Barré J, Pons JY,
Boukef M, Paniel BJ and Tillement JP: Plasma coenzyme Q10
concentrations in breast cancer: Prognosis and therapeutic
consequences. Int J Clin Pharmacol Ther. 36:506–509.
1998.PubMed/NCBI
|
11
|
Moon HJ, Ko WK, Han SW, Kim DS, Hwang YS,
Park HK and Kwon IK: Antioxidants, like coenzyme Q10, selenite, and
curcumin, inhibited osteoclast differentiation by suppressing
reactive oxygen species generation. Biochem Biophys Res Commun.
418:247–253. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Moon HJ, Ko WK, Jung MS, Kim JH, Lee WJ,
Park KS, Heo JK, Bang JB and Kwon IK: Coenzyme q10 regulates
osteoclast and osteoblast differentiation. J Food Sci.
78:H785–H891. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Panepucci RA, Siufi JL, Silva WA Jr,
Proto-Siquiera R, Neder L, Orellana M, Rocha V, Covas DT and Zago
MA: Comparison of gene expression of umbilical cord vein and bone
marrow-derived mesenchymal stem cells. Stem Cells. 22:1263–1278.
2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu H, VandeVord PJ, Mao L, Matthew HW,
Wooley PH and Yang SY: Improved tissue-engineered bone regeneration
by endothelial cell mediated vascularization. Biomaterials.
30:508–517. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ke B, Xu Z, Ling Y, Qiu W, Xu Y, Higa T
and Aruoma OI: Modulation of experimental osteoporosis in rats by
the antioxidant beverage effective microorganism-X (EM-X). Biomed
Pharmacother. 63:114–119. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Laib A and Rüegsegger P: Calibration of
trabecular bone structure measurements of in vivo three-dimensional
peripheral quantitative computed tomography with
28-microm-resolution microcomputed tomography. Bone. 24:35–39.
1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Eriksen EF, Díez-Pérez A and Boonen S:
Update on long-term treatment with bisphosphonates for
postmenopausal osteoporosis: A systematic review. Bone. 58:126–135.
2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fan JZ, Yang L, Meng GL, Lin YS, Wei BY,
Fan J, Hu HM, Liu YW, Chen S, Zhang JK, et al: Estrogen improves
the proliferation and differentiation of hBMSCs derived from
postmenopausal osteoporosis through notch signaling pathway. Mol
Cell Biochem. 392:85–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lewiecki EM, Miller PD, Harris ST, Bauer
DC, Davison KS, Dian L, Hanly DA, McClung MR, Yuen CK and Kendler
DL: Understanding and communicating the benefits and risks of
denosumab, raloxifene, and teriparatide for the treatment of
osteoporosis. J Clin Densitom. 17:490–495. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ramalho-Ferreira G, Faverani L, Prado F,
Garcia I and Okamoto R: Raloxifene enhances peri-implant bone
healing in osteoporotic rats. Int J Oral Maxillofac Surg.
44:798–805. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lloyd M: Treatment of postmenopausal
osteoporosis. N Engl J Med. 339:2021998. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rodan GA and Martin TJ: Therapeutic
approaches to bone diseases. Science. 289:1508–1514. 2000.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kendler D: Osteoporosis: Therapies now and
in the future. Climacteric. 14:604–605. 2011.PubMed/NCBI
|
25
|
Caso G, Kelly P, McNurlan MA and Lawson
WE: Effect of coenzyme q10 on myopathic symptoms in patients
treated with statins. Am J Cardiol. 99:1409–1412. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lister RE: Coenzyme Q10 and periodontal
disease. Br Dent J. 179:200–201. 1995. View Article : Google Scholar : PubMed/NCBI
|
27
|
Morisco C, Trimarco B and Condorelli M:
Effect of coenzyme Q10 therapy in patients with congestive heart
failure: A long-term multicenter randomized study. Clin Investig.
71 8 Suppl:S134–S136. 1993. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tuli R, Tuli S, Nandi S, Wang ML,
Alexander PG, Haleem-Smith H, Hozack WJ, Manner PA, Danielson KG
and Tuan RS: Characterization of multipotential mesenchymal
progenitor cells derived from human trabecular bone. Stem Cells.
21:681–693. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Le Blanc K and Pittenger M: Mesenchymal
stem cells: Progress toward promise. Cytotherapy. 7:36–45. 2005.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Neve A, Corrado A and Cantatore FP:
Osteoblast physiology in normal and pathological conditions. Cell
Tissue Res. 343:289–302. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bhagavan HN and Chopra RK: Coenzyme Q10:
Absorption, tissue uptake, metabolism and pharmacokinetics. Free
Radic Res. 40:445–453. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bekker PJ, Holloway D, Nakanishi A,
Arrighi M, Leese PT and Dunstan CR: The effect of a single dose of
osteoprotegerin in postmenopausal women. J Bone Miner Res.
16:348–360. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Orimo H, Fujita T and Yoshikawa M:
Increased sensitivity of bone to parathyroid hormone in
ovariectomized rats. Endocrinology. 90:760–763. 1972. View Article : Google Scholar : PubMed/NCBI
|
35
|
Carnero A, Blanco-Aparicio C, Renner O,
Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer,
therapeutic implications. Curr Cancer Drug Targets. 8:187–198.
2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Maehama T and Dixon JE: The tumor
suppressor, PTEN/MMAC1, dephosphorylates the lipid second
messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem.
273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI
|
37
|
Xi JC, Zang HY, Guo LX, Xue HB, Liu XD,
Bai YB and Ma YZ: The PI3K/AKT cell signaling pathway is involved
in regulation of osteoporosis. J Recept Signal Transduct Res.
35:640–645. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang Y, Zeng X, Zhang L and Zheng X:
Stimulatory effect of puerarin on bone formation through activation
of PI3K/Akt pathway in rat calvaria osteoblasts. Planta Med.
73:341–347. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Choi SC, Kim SJ, Choi JH, Park CY, Shim WJ
and Lim DS: Fibroblast growth factor-2 and −4 promote the
proliferation of bone marrow mesenchymal stem cells by the
activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem
Cells Dev. 17:725–736. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Choi H, Park HH, Koh SH, Choi NY, Yu HJ,
Park J, Lee YJ and Lee KY: Coenzyme Q10 protects against amyloid
beta-induced neuronal cell death by inhibiting oxidative stress and
activating the P13K pathway. Neurotoxicology. 33:85–90. 2012.
View Article : Google Scholar : PubMed/NCBI
|