1
|
Jiménez-Flores LM, López-Briones S,
Macías-Cervantes MH, Ramírez-Emiliano J and Pérez-Vázquez V: A
ppargamma, NF-κB and AMPK-dependent mechanism may be involved in
the beneficial effects of curcumin in the diabetic db/db mice
liver. Molecules. 19:8289–8302. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kume S, Koya D, Uzu T and Maegawa H: Role
of nutrient-sensing signals in the pathogenesis of diabetic
nephropathy. Biomed Res Int. 2014:3154942014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gao Q, Shen W, Qin W, Zheng C, Zhang M,
Zeng C, Wang S, Wang J, Zhu X and Liu Z: Treatment of db/db
diabetic mice with triptolide: A novel therapy for diabetic
nephropathy. Nephrol Dial Transplant. 25:3539–3547. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang K: Molecular mechanisms of hepatic
apoptosis regulated by nuclear factors. Cell Signal. 27:729–738.
2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gerber PA and Rutter GA: The role of
oxidative stress and hypoxia in pancreatic beta-cell dysfunction in
diabetes mellitus. Antioxid Redox Signal. 26:501–518. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Kajimoto Y and Kaneto H: Role of oxidative
stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci.
1011:168–176. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Maritim AC, Sanders RA and Watkins JB III:
Diabetes, oxidative stress, and antioxidants: A review. J Biochem
Mol Toxicol. 17:24–38. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Karunakaran U and Park KG: A systematic
review of oxidative stress and safety of antioxidants in diabetes:
Focus on islets and their defense. Diabetes Metab J. 37:106–112.
2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lieben L: Diabetic nephropathy: Lipid
toxicity drives renal disease. Nat Rev Nephrol. 13:1942017.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Flyvbjerg A: The role of the complement
system in diabetic nephropathy. Nat Rev Nephrol. 13:311–318. 2017.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Nakai K, Fujii H, Kono K, Goto S, Kitazawa
R, Kitazawa S, Hirata M, Shinohara M, Fukagawa M and Nishi S:
Vitamin d activates the nrf2-keap1 antioxidant pathway and
ameliorates nephropathy in diabetic rats. Am J Hypertens.
27:586–595. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hsu CH and Cheng AL: Clinical studies with
curcumin. Adv Exp Med Biol. 595:471–480. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gupta SC, Patchva S, Koh W and Aggarwal
BB: Discovery of curcumin, a component of golden spice, and its
miraculous biological activities. Clin Exp Pharmacol Physiol.
39:283–299. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shishodia S: Molecular mechanisms of
curcumin action: Gene expression. Biofactors. 39:37–55. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Sikora-Polaczek M, Bielak-Zmijewska A and
Sikora E: Molecular and cellular mechanisms of curcumin
action-beneficial effect on organism. Postepy Bioch. 57:74–84.
2011.
|
16
|
Joe B, Vijaykumar M and Lokesh BR:
Biological properties of curcumin-cellular and molecular mechanisms
of action. Crit Rev Food Sci Nutr. 44:97–111. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pescosolido N, Giannotti R, Plateroti AM,
Pascarella A and Nebbioso M: Curcumin: Therapeutical potential in
ophthalmology. Planta Med. 80:249–254. 2014.PubMed/NCBI
|
18
|
Shehzad A, Ha T, Subhan F and Lee YS: New
mechanisms and the anti-inflammatory role of curcumin in obesity
and obesity-related metabolic diseases. Eur J Nutr. 50:151–161.
2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Motterlini R, Foresti R, Bassi R and Green
CJ: Curcumin, an antioxidant and anti-inflammatory agent, induces
heme oxygenase-1 and protects endothelial cells against oxidative
stress. Free Radic Biol Med. 28:1303–1312. 2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
Martínez-Morúa A, Soto-Urquieta MG,
Franco-Robles E, Zúñiga-Trujillo I, Campos-Cervantes A,
Pérez-Vázquez V and Ramírez-Emiliano J: Curcumin decreases
oxidative stress in mitochondria isolated from liver and kidneys of
high-fat diet-induced obese mice. J Asian Nat Prod Res. 15:905–915.
2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bhatia NK, Srivastava A, Katyal N, Jain N,
Khan MA, Kundu B and Deep S: Curcumin binds to the pre-fibrillar
aggregates of cu/zn superoxide dismutase (sod1) and alters its
amyloidogenic pathway resulting in reduced cytotoxicity. Biochim
Biophys Acta. 1854:426–436. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhou J, Qu XD, Li ZY, Wei J, Liu Q, Ma YH
and He JJ: Salvianolic acid b attenuates toxin-induced neuronal
damage via nrf2-dependent glial cells-mediated protective activity
in Parkinson's disease models. PLoS One. 9:e1016682014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zenkov NK, Menshchikova EB and Tkachev VO:
Keap1/nrf2/are redox-sensitive signaling system as a
pharmacological target. Biochemistry (Mosc). 78:19–36. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Golalipour MJ, Ghafari S, Kouri V and
Kestkar AA: Proliferation of the b-cells of pancreas in diabetic
rats treated with urtica dioica. Int J Morphol. 28:399–404.
2010. View Article : Google Scholar
|
25
|
Xie ZL, Ye PS, Zhang SK, Zhang YS and Shen
XZ: Endogenous lps alters liver GH/IGF system gene expression and
plasma lipoprotein lipase in goats. Physiol Res. 64:721–729.
2015.PubMed/NCBI
|
26
|
Deml B, Kariminejad A, Borujerdi RH,
Muheisen S, Reis LM and Semina EV: Mutations in mab21l2 result in
ocular coloboma, microcornea and cataracts. PLoS Genet.
11:e10050022015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Szkudelski T: The mechanism of alloxan and
streptozotocin action in B cells of the rat pancreas. Physiol Res.
50:537–546. 2001.PubMed/NCBI
|
28
|
Tiedge M, Lortz S, Drinkgern J and Lenzen
S: Relation between antioxidant enzyme gene expression and
antioxidative defense status of insulin-producing cells. Diabetes.
46:1733–1742. 1997. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yeh GY, Eisenberg DM, Kaptchuk TJ and
Phillips RS: Systematic review of herbs and dietary supplements for
glycemic control in diabetes. Diabetes Care. 26:1277–1294. 2003.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Rahimi HR, Mohammadpour AH, Dastani M,
Jaafari MR, Abnous K, Mobarhan Ghayour M and Oskuee Kazemi R: The
effect of nano-curcumin on HbA1c, fasting blood glucose and lipid
profile in diabetic subjects: A randomized clinical trial. Avicenna
J Phytomed. 6:567–577. 2016.PubMed/NCBI
|
31
|
Bennett RA and Pegg AE: Alkylation of DNA
in rat tissues following administration of streptozotocin. Cancer
Res. 41:2786–2790. 1981.PubMed/NCBI
|
32
|
Vikram A, Tripathi DN, Ramarao P and Jena
GB: Evaluation of streptozotocin genotoxicity in rats from
different ages using the micronucleus assay. Regul Toxicol
Pharmacol. 49:238–244. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Damasceno DC, Volpato GT, Sinzato YK, Lima
PH, Souza MS, Iessi IL, Kiss AC, Takaku M, Rudge MV and Calderon
IM: Genotoxicity and fetal abnormality in streptozotocin-induced
diabetic rats exposed to cigarette smoke prior to and during
pregnancy. Exp Clin Endocrinol Diabetes. 119:549–553. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Lenzen S, Drinkgern J and Tiedge M: Low
antioxidant enzyme gene expression in pancreatic islets compared
with various other mouse tissues. Free Radic Biol Med. 20:463–466.
1996. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pigeolet E, Corbisier P, Houbion A,
Lambert D, Michiels C, Raes M, Zachary MD and Remacle J:
Glutathione peroxidase, superoxide dismutase, and catalase
inactivation by peroxides and oxygen derived free radicals. Mech
Ageing Dev. 51:283–297. 1990. View Article : Google Scholar : PubMed/NCBI
|
36
|
Meghana K, Sanjeev G and Ramesh B:
Curcumin prevents streptozotocin-induced islet damage by scavenging
free radicals: A prophylactic and protective role. Eur J Pharmacol.
577:183–191. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Grant CM, MacIver FH and Dawes IW:
Glutathione is an essential metabolite required for resistance to
oxidative stress in the yeast saccharomyces cerevisiae. Curr Genet.
29:511–515. 1996. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jin L, Xue HY, Jin LJ, Li SY and Xu YP:
Antioxidant and pancreas-protective effect of aucubin on rats with
streptozotocin-induced diabetes. Eur J Pharmacol. 582:162–167.
2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu Z, Li J, Zeng Z, Liu M and Wang M: The
antidiabetic effects of cysteinyl metformin, a newly synthesized
agent, in alloxan- and streptozocin-induced diabetic rats. Chem
Biol Interact. 173:68–75. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Afanasiev SA, Kondratieva DS, Rebrova TY,
Batalov RE and Popov SV: Coupling of the functional stability of
rat myocardium and activity of lipid peroxidation in combined
development of postinfarction remodeling and diabetes mellitus. J
Diabetes Res. 2016:25486892016. View Article : Google Scholar : PubMed/NCBI
|
41
|
He X, de Seymour JV, Sulek K, Qi H, Zhang
H, Han TL, Villas-Bôas SG and Baker PN: Maternal hair metabolome
analysis identifies a potential marker of lipid peroxidation in
gestational diabetes mellitus. Acta Diabetol. 53:119–122. 2016.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Shi L, Wu L, Chen Z, Yang J, Chen X, Yu F,
Zheng F and Lin X: Mir-141 activates nrf2-dependent antioxidant
pathway via down-regulating the expression of keap1 conferring the
resistance of hepatocellular carcinoma cells to 5-fluorouracil.
Cell Physiol Biochem. 35:2333–2348. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lin M, Zhai X, Wang G, Tian X, Gao D, Shi
L, Wu H, Fan Q, Peng J, Liu K and Yao J: Salvianolic acid b
protects against acetaminophen hepatotoxicity by inducing nrf2 and
phase II detoxification gene expression via activation of the pi3k
and pkc signaling pathways. J Pharmacol Sci. 127:203–210. 2015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang H, Liu YY, Jiang Q, Li KR, Zhao YX,
Cao C and Yao J: Salvianolic acid a protects RPE cells against
oxidative stress through activation of NRF2/HO-1 signaling. Free
Radic Biol Med. 69:219–228. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lee HJ, Seo M and Lee EJ: Salvianolic acid
B inhibits atherogenesis of vascular cells through induction of
NRF2-dependent heme oxygenase-1. Curr Med Chem. 21:3095–3106. 2014.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Suzuki T and Yamamoto M: Molecular basis
of the keap1-NRF2 system. Free Radic Biol Med. 88:93–100. 2015.
View Article : Google Scholar : PubMed/NCBI
|