1
|
Congdon NG, Friedman DS and Lietman T:
Important causes of visual impairment in the world today. JAMA.
290:2057–2060. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fletcher EC and Scholl HP: Ophthalmic
disease in the ageing society. Ophthalmology and the Ageing
Society. 1–9. 2013. View Article : Google Scholar
|
3
|
Curcio CA, Zanzottera EC, Messinger JD,
Ach T, Smith T and Freund KB: Retinal pigment epithelium (RPE)
transdifferentiation and death in age-related macular degeneration
(AMD), seen in the Project MACULA grading system. Invest Ophth Vis
Sci. 56:893. 2015.
|
4
|
Beatty S, Koh HH, Phil M, Henson D and
Boulton M: The role of oxidative stress in the pathogenesis of
age-related macular degeneration. Surv Ophthalmol. 45:115–134.
2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jarrett SG and Boulton ME: Consequences of
oxidative stress in age-related macular degeneration. Mol Aspects
Med. 33:399–417. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liang FQ and Godley BF: Oxidative
stress-induced mitochondrial DNA damage in human retinal pigment
epithelial cells: A possible mechanism for RPE aging and
age-related macular degeneration. Exp Eye Res. 76:397–403. 2003.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Drobek-Słowik M, Karczewicz D and Safranow
K: The potential role of oxidative stress in the pathogenesis of
the age-related macular degeneration (AMD). Postepy Hig Med Dosw
(Online). 61:28–37. 2007.(In Polish). PubMed/NCBI
|
8
|
Park JC, Young HS, Yu YB and Lee JH:
Isorhamnetin sulphate from the leaves and stems of oenanthe
javanica in korea. Planta Med. 61:377–378. 1995. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen TL, Zhu GL, Wang JA, Zhang GD, Liu
HF, Chen JR, Wang Y and He XL: Protective effects of isorhamnetin
on apoptosis and inflammation in TNF-α-induced HUVECs injury. Int J
Clin Exp Pathol. 8:2311–2320. 2015.PubMed/NCBI
|
10
|
Saud SM, Young MR, Jones-Hall YL, Ileva L,
Evbuomwan MO, Wise J, Colburn NH, Kim YS and Bobe G:
Chemopreventive activity of plant flavonoid isorhamnetin in
colorectal cancer is mediated by oncogenic Src and β-catenin.
Cancer Res. 73:5473–5484. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang N, Pei F, Wei H, Zhang T and Yang C,
Ma G and Yang C: Isorhamnetin protects rat ventricular myocytes
from ischemia and reperfusion injury. Exp Toxicol Pathol. 63:33–38.
2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yang JH, Shin BY, Han JY, Kim MG, Wi JE,
Kim YW, Cho IJ, Kim SC, Shin SM and Ki SH: Isorhamnetin protects
against oxidative stress by activating Nrf2 and inducing the
expression of its target genes. Toxicol Applied Pharmacol.
274:293–301. 2014. View Article : Google Scholar
|
13
|
Kong CS, Kim JA, Qian ZJ, Kim YA, Lee JI,
Kim SK, Nam TJ and Seo Y: Protective effect of isorhamnetin
3-О-β-d-glucopyranoside from Salicornia herbacea against
oxidation-induced cell damage. Food Chem Toxicol. 47:1914–1920.
2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bouhlel I, Skandrani I, Nefatti A, Valenti
K, Ghedira K, Mariotte AM, Hininger-Favier I, Laporte F,
Dijoux-Franca MG and Chekir-Ghedira L: Antigenotoxic and
antioxidant activities of isorhamnetin 3-O neohesperidoside from
Acacia salicina. Drug Chem Toxicol. 32:258–267. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Choi YH: The cytoprotective effect of
isorhamnetin against oxidative stress is mediated by the
upregulation of the Nrf2-dependent HO-1 expression in C2C12
myoblasts through scavenging reactive oxygen species and ERK
inactivation. Gen Physiol Biophs. 35:145–154. 2016. View Article : Google Scholar
|
16
|
Jänicke RU, Sprengart ML, Wati MR and
Porter AG: Caspase-3 is required for DNA fragmentation and
morphological changes associated with apoptosis. J Biol Chem.
273:9357–9360. 1998. View Article : Google Scholar : PubMed/NCBI
|
17
|
Faghiri Z and Bazan NG: PI3K/Akt and
mTOR/p70S6K pathways mediate neuroprotection D1-induced retianl
pigment epithelial cell survival during oxidarive stress-induced
apoptosis. Exp Eye Res. 90:718–725. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim MH, Chung J, Yang JW, Chung SM, Kwag
NH and Yoo JS: Hydrogen peroxide-induced cell death in a human
retinal pigment epithelial cell line, ARPE-19. Korean J Ophthalmol.
17:19–28. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hanneken A, Lin FF, Johnson J and Maher P:
Flavonoids protect human retinal pigment epithelial cells from
oxidative-stress-induced death. Invest Ophthalmol Vis Sci.
47:3164–3177. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sreekumar PG, Kannan R, Yaung J, Spee CK,
Ryan SJ and Hinton DR: Protection from oxidative stress by
methionine sulfoxide reductases in RPE cells. Biochem Bioph Res Co.
334:245–253. 2005. View Article : Google Scholar
|
21
|
Cai J, Nelson KC, Wu M, Sternberg P Jr and
Jones DP: Oxidative damage and protection of the RPE. Prog Retin
Eye Res. 19:205–221. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sun B, Sun GB, Xiao J, Chen RC, Wang X, Wu
Y, Cao L, Yang ZH and Sun XB: Isorhamnetin inhibits
H2O2-induced activation of the intrinsic
apoptotic pathway in H9c2 cardiomyocytes through scavenging
reactive oxygen species and ERK inactivation. J Cell Biochem.
113:473–485. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Porter AG and Jänicke RU: Emerging roles
of caspase-3 in apoptosis. Cell Death Differ. 6:99–104. 1999.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kook D, Wolf AH, Alice LY, Neubauer AS,
Priglinger SG, Kampik A and Welge-Luüssen UC: The protective effect
of quercetin against oxidative stress in the human RPE in vitro.
Invest Ophth Vis Sci. 49:1712–1720. 2008. View Article : Google Scholar
|
25
|
Wang R, Peng L, Zhao J, Zhang L, Guo C,
Zheng W and Chen H: Gardenamide A protects RGC-5 cells from
H2O2-induced oxidative stress insults by
activating PI3K/Akt/eNOS signaling pathway. Int J Mol Sci.
16:22350–22367. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zha X, Wu G, Zhao X, Zhou L, Zhang H, Li
J, Ma L and Zhang Y: PRDX6 protects ARPE-19 cells from oxidative
damage via PI3K/AKT signaling. Cell Physiol Biochem. 36:2217–2228.
2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li Z, Dong X, Liu H, Chen X, Shi H, Fan Y,
Hou D and Zhang X: Astaxanthin protects ARPE-19 cells from
oxidative stress via upregulation of Nrf2-regulated phase II
enzymes through activation of PI3K/Akt. Mol Vis. 19:1656–1666.
2013.PubMed/NCBI
|
28
|
Yang P, Peairs JJ, Tano R and Jaffe GJ:
Oxidant-mediated Akt activation in human RPE cells. Invest
Ophthalmol Vis Sci. 47:4598–4606. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Luo Y, Sun G, Dong X, Wang M, Qin M, Yu Y
and Sun X: Isorhamnetin attenuates atherosclerosis by inhibiting
macrophage apoptosis via PI3K/AKT activation and HO-1 induction.
PLoS One. 10:e01202592015. View Article : Google Scholar : PubMed/NCBI
|