1
|
Takahashi H and Teramoto A: Trial of
targeting therapy against malignant glioma using monoclonal
antibody. J Nippon Med Sch. 71:2–3. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Souhami R and Tobias J: Cancer and its
management. 2nd edition. Oxford: Blackwell Sciences; 1995
|
3
|
Bleehen NM and Stenning SP: A medical
research council trial of two radiotherapy doses in the treatment
of grades 3 and 4 astrocytoma. Br J Cancer. 64:769–774. 1991.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kitange GJ, Templeton KL and Jenkins RB:
Recent advances in the molecular genetics of primary gliomas. Curr
Opin Oncol. 15:197–203. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ramos S: Cancer chemoprevention and
chemotherapy: Dietary polyphenols and signalling pathways. Mol Nutr
Food Res. 52:507–526. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li BH and Tian WX: Presence of fatty acid
synthase inhibitors in the rhizome of Alpinia officinarum
hance. J Enzym Inhib Med Ch. 18:349–356. 2003. View Article : Google Scholar
|
7
|
Volpi N: Separation of flavonoids and
phenolic acids from propolis by capillary zone electrophoresis.
Electrophoresis. 25:1872–1878. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sulaiman GM, Al Sammarrae KW, Ad'hiah AH,
Zucchetti M, Frapolli R, Bello E, Erba E, D'Incalci M and Bagnati
R: Chemical characterization of Iraqi propolis samples and
assessing their antioxidant potentials. Food Chem Toxicol.
49:2415–2421. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Heo MY, Sohn SJ and Au WW:
Anti-genotoxicity of galangin as a cancer chemopreventive agent
candidate. Mutat Res. 488:135–150. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cushnie TP and Lamb AJ: Assessment of the
antibacterial activity of galangin against 4-quinolone resistant
strains of Staphylococcus aureus. Phytomedicine. 13:187–191.
2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gwak J, Oh J, Cho M, Bae SK, Song IS, Liu
KH, Jeong Y, Kim DE, Chung YH and Oh S: Galangin suppresses the
proliferation of β-catenin response transcription positive cancer
cells by promoting adenomatous polyposis coli/Axin/glycogen
synthase kinase-3β-independent β-catenin degradation. Mol
Pharmacol. 79:1014–1022. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ha TK, Kim ME, Yoon JH, Bae SJ, Yeom J and
Lee JS: Galangin induces human colon cancer cell death via the
mitochondrial dysfunction and caspase-dependent pathway. Exp Biol
Med (Maywood). 238:1047–1054. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Murray TJ, Yang X and Sherr DH: Growth of
a human mammary tumor cell line is blocked by galangin, a naturally
occurring bioflavonoid, and is accompanied by down-regulation of
cyclins D3, E, and A. Breast Cancer Res. 8:R172006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang HT, Luo H, Wu J, Lan LB, Fan DH, Zhu
KD, Chen XY, Wen M and Liu HM: Galangin induces apoptosis of
hepatocellular carcinoma cells via the mitochondrial pathway. World
J Gastroenterol. 16:3377–3384. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang W, Lan Y, Huang Q and Hua Z:
Galangin induces B16F10 melanoma cell apoptosis via mitochondrial
pathway and sustained activation of p38 MAPK. Cytotechnology.
65:447–455. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang H, Chen AY, Rojanasakul Y, Ye X,
Rankin GO and Chen YC: Dietary compounds galangin and myricetin
suppress ovarian cancer cell angiogenesis. J Funct Foods.
15:464–475. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bestwick CS and Milne L: Influence of
galangin on HL-60 cell proliferation and survival. Cancer Lett.
243:80–89. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Szliszka E, Czuba ZP, Bronikowska J,
Mertas A, Paradysz A and Krol W: Ethanolic extract of propolis
augments TRAIL-induced apoptotic death in prostate cancer cells.
Evid Based Complement Alternat Med. 2011:5351722011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wen M, Wu J, Luo H and Zhang H: Galangin
induces autophagy through upregulation of p53 in HepG2 cells.
Pharmacology. 89:247–255. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang G, Li Z, Tian N, Han L, Fu Y, Guo Z
and Tian Y: miR-148b-3p inhibits malignant biological behaviors of
human glioma cells induced by high HOTAIR expression. Oncol Lett.
12:879–86. 2016.PubMed/NCBI
|
21
|
Kim YH, Shin EK, Kim DH, Lee HH, Park JH
and Kim JK: Antiangiogenic effect of licochalcone A. Biochem
Pharmacol. 80:1152–1159. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Green JA, Elkington PT, Pennington CJ,
Roncaroli F, Dholakia S, Moores RC, Bullen A, Porter JC, Agranoff
D, Edwards DR and Friedland JS: Mycobacterium tuberculosis
upregulates microglial matrix metalloproteinase-1 and −3 expression
and secretion via NF kappaB- and activator protein-1-dependent
monocyte networks. J Immunol. 184:6492–6503. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Huh JE, Jung IT, Choi J, Baek YH, Lee JD,
Park DS and Choi DY: The natural flavonoid galangin inhibits
osteoclastic bone destruction and osteoclastogenesis by suppressing
NF-κB in collagen-induced arthritis and bone marrow-derived
macrophages. Eur J Pharmacol. 698:57–66. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jung YC, Kim ME, Yoon JH, Park PR, Youn
HY, Lee HW and Lee JS: Anti-inflammatory effects of galangin on
lipopolysaccharide-activated macrophages via ERK and NF-κB pathway
regulation. Immunopharmacol Immunotoxicol. 36:426–432. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Y, Wu J, Lin B, Li X, Zhang H, Ding
H, Chen X, Lan L and Luo H: Galangin suppresses HepG2 cell
proliferation by activating the TGF-β receptor/Smad pathway.
Toxicology. 326:9–17. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jung CH, Jang SJ, Ahn J, Gwon SY, Jeon TI,
Kim TW and Ha TY: Alpinia officinarum inhibits adipocyte
differentiation and high-fat diet-induced obesity in mice through
regulation of adipogenesis and lipogenesis. J Med Food. 15:959–967.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lotito SB and Frei B: Dietary flavonoids
attenuate tumor necrosis factor alpha-induced adhesion molecule
expression in human aortic endothelial cells. Structure-function
relationships and activity after first pass metabolism. J Biol
Chem. 281:37102–371010. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim HH, Bae Y and Kim SH: Galangin
attenuates mast cell-mediated allergic inflammation. Food Chem
Toxicol. 57:209–216. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Choi JK and Kim SH: Inhibitory effect of
galangin on atopic dermatitis-like skin lesions. Food Chem Toxicol.
68:135–141. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
O'Leary KA, de Pascual-Teresa S, Needs PW,
Bao YP, O'Brien NM and Williamson G: Effect of flavonoids and
vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutat Res.
551:245–254. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang HT, Luo H, Wu J, Lan LB, Fan DH, Zhu
KD, Chen XY, Wen M and Liu HM: Galangin induces apoptosis of
hepatocellular carcinoma cells via the mitochondrial pathway. World
J Gastroenterol. 16:3377–3384. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Su L, Chen X, Wu J, Lin B, Zhang H, Lan L
and Luo H: Galangin inhibits proliferation of hepatocellular
carcinoma cells by inducing endoplasmic reticulum stress. Food Chem
Toxicol. 62:810–816. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang H, Li N, Wu J, Su L, Chen X, Lin B
and Luo H: Galangin inhibits proliferation of HepG2 cells by
activating AMPK via increasing the AMP/TAN ratio in a
LKB1-independent manner. Eur J Pharmacol. 718:235–244. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Pandey M, Mathew A and Nair MK: Global
perspective of tobacco habits and lung cancer: A lesson for third
world countries. Eur J Cancer Prev. 8:271–279. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Spira A and Ettinger DS: Multidisciplinary
management of lung cancer. N Engl J Med. 350:379–392. 2004.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sarkar FH and Li YW: Targeting multiple
signal pathways by chemopreventive agents for cancer prevention and
therapy. Acta Pharmacol Sin. 28:1305–1315. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Weng CJ and Yen GC: Chemopreventive
effects of dietary phytochemicals against cancer invasion and
metastasis: Phenolic acids, monophenol, polyphenol, and their
derivatives. Cancer Treat Rev. 38:76–87. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chetty C, Rao JS and Lakka SS: Matrix
metalloproteinase pharmacogenomics in non-small cell lung
carcinoma. Pharmacogenomics. 12:535–546. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
López-Otín C, Palavalli LH and Samuels Y:
Protective roles of matrix metalloproteinases: From mouse models to
human cancer. Cell Cycle. 8:3657–3662. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li M, Xiao T, Zhang Y, Feng L, Lin D, Liu
Y, Mao Y, Guo S, Han N, Di X, et al: Prognostic significance of
matrix metalloproteinase-1 levels in peripheral plasma and tumour
tissues of lung cancer patients. Lung Cancer. 69:341–347. 2010.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim EK and Choi EJ: Pathological roles of
MAPK signaling pathways in human diseases. Biochim Biophys Acta.
1802:396–405. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wagner EF and Nebreda AR: Signal
integration by JNK and p38 MAPK pathways in cancer development. Nat
Rev Cancer. 9:537–549. 2009. View
Article : Google Scholar : PubMed/NCBI
|
43
|
Hennessy BT, Smith DL, Ram PT, Lu Y and
Mills GB: Exploiting the PI3K/AKT pathway for cancer drug
discovery. Nat Rev Drug Discov. 4:988–1004. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yoon SO, Shin S, Lee HJ, Chun HK and Chung
AS: Isoginkgetin inhibits tumor cell invasion by regulating
phosphatidylinositol 3-kinase/Akt-dependent matrix
metalloproteinase-9 expression. Mol Cancer Ther. 5:2666–2675. 2006.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Veit C, Genze F, Menke A, Hoeffert S,
Gress TM, Gierschik P and Giehl K: Activation of
phosphatidylinositol 3-kinase and extracellular signal-regulated
kinase is required for glial cell line-derived neurotrophic
factor-induced migration and invasion of pancreatic carcinoma
cells. Cancer Res. 64:5291–5300. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Günther W, Skaftnesmo KO, Arnold H and
Terzis AJ: Molecular approaches to brain tumour invasion. Acta
Neurochir (Wien). 145:1029–1036. 2003. View Article : Google Scholar : PubMed/NCBI
|