1
|
Yagoda A, Abi-Rached B and Petrylak D:
Chemotherapy for advanced renal-cell carcinoma: 1983–1993. Semin
Oncol. 22:42–60. 1995.PubMed/NCBI
|
2
|
Spencer WF, Linehan WM, Walther MM, Haas
GP, Lotze MT, Topalian SL, Yang JC, Merino MJ, Lange JR, Pockaj BA,
et al: Immunotherapy with interleukin-2 and alpha-interferon in
patients with metastatic renal cell cancer with in situ primary
cancers: A pilot study. J Urol. 147:24–30. 1992. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ljungberg B, Hanbury DC, Kuczyk MA,
Merseburger AS, Mulders PF, Patard JJ and Sinescu IC: European
Association of Urology Guideline Group for renal cell carcinoma.
Renal cell carcinoma guideline. Eur Urol. 51:1502–1510. 2007.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Motzer RJ and Bukowski RM: Targeted
therapy for metastatic renal cell carcinoma. J Clin Oncol.
24:5601–5608. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tamm I, Kornblau SM, Segall H, Krajewski
S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, et al:
Expression and prognostic significance of IAP-family genes in human
cancers and myeloid leukemias. Clin Cancer Res. 6:1796–1803.
2000.PubMed/NCBI
|
6
|
Nagata S: Apoptosis by death factor. Cell.
88:355–365. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Watabe M, Hishikawa K, Takayanagi A,
Shimizu N and Nakaki T: Caffeic acid phenethyl ester induces
apoptosis by inhibition of NFkappaB and activation of Fas in human
breast cancer MCF-7 cells. J Biol Chem. 279:6017–6026. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Liang Lu, Dong Li and Fuchu He: Advances
in bioinformatics of ubiquitination of protein. Hereditas.
35:17–26. 2013.(In Chinese). PubMed/NCBI
|
9
|
Adams JM and Cory S: The Bcl-2 protein
family: Arbiters of cell survival. Science. 281:1322–1326. 1998.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kothakota S, Azuma T, Reinhard C, Klippel
A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ
and Williams LT: Caspase-3-generated fragment of gelsolin: Effector
of morphological change in apoptosis. Science. 278:294–298. 1997.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Watabe M, Hishikawa K, Takayanagi A,
Shimizu N and Nakaki T: Caffeic acid phenethyl ester induces
apoptosis by inhibition of NFkappaB and activation of Fas in human
breast cancer MCF-7 cells. J Biol Chem. 279:6017–6026. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Chang HY and Yang X: Proteases for cell
suicide: Functions and regulation of caspases. Microbiol Mol Biol
Rev. 64:821–846. 2000. View Article : Google Scholar : PubMed/NCBI
|
13
|
Holcik M and Korneluk RG: XIAP, the
guardian angel. Nat Rev Mol Cell Biol. 2:550–556. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yamada T, Horinaka M, Shinnoh M, Yoshioka
T, Miki T and Sakai T: A novel HDAC inhibitor OBP-801 and a PI3K
inhibitor LY294002 synergistically induce apoptosis via the
suppression of survivin and XIAP in renal cell carcinoma. Int J
Oncol. 43:1080–1086. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shao SL, Cui TT, Zhao W, Zhang WW, Xie ZL,
Wang CH, Jia HS and Liu Q: RNAi-based knockdown of multidrug
resistance-associated protein 1 is sufficient to reverse multidrug
resistance of human lung cells. Asian Pac J Cancer Prev.
15:10597–105601. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Guo SY, Zhu XD, Ge LY, Qu S, Li L, Su F
and Guo Y: RNAi-mediated knockdown of the c-jun gene sensitizes
radioresistant human nasopharyngeal carcinoma cell line CNE-2R to
radiation. Oncol Rep. 33:1155–1160. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Patrick J: Wightman, George R. Jackson and
Katrina M. Dipple: Disruption of glycerol metabolism by RNAi
targeting of genes encoding glycerol kinase results in a range of
phenotype severity in Drosophila. PLoS One. 8:e716642013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang R, Li B, Wang X, Lin F, Gao P, Cheng
SY and Zhang HZ: Inhibiting XIAP expression by RNAi to inhibit
proliferation and enhance radiosensitivity in laryngeal cancer cell
line. Auris Nasus Larynx. 36:332–339. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cao LP, Song JL, Yi XP and Li YX: Double
inhibition of NF-κB and XIAP via RNAi enhances the sensitivity of
pancreatic cancer cells to gemcitabine. Oncol Rep. 29:1659–1665.
2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tomita Y, Bilim V, Kawasaki T, Takahashi
K, Okan I, Magnusson KP and Wiman KG: Frequent expression of Bcl-2
in renal-cell carcinomas carrying wild-type p53. Int J Cancer.
66:322–325. 1996. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bilim V, Yuuki K, Itoi T, Muto A, Kato T,
Nagaoka A, Motoyama T and Tomita Y: Double inhibition of XIAP and
Bcl-2 axis is beneficial for retrieving sensitivity of renal cell
cancer to apoptosis. Br J Cancer. 98:941–949. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bilim V, Yuuki K, Itoi T, Muto A, Kato T,
Nagaoka A, Motoyama T and Tomita Y: Double inhibition of XIAP and
Bcl-2 axis is beneficial for retrieving sensitivity of renal cell
cancer to apoptosis. Br J Cancer. 98:941–949. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sioud M: siRNA and miRNA Gene Silencing:
From Bench to Bedside. Humana Press; New York, NY: 2009, View Article : Google Scholar
|
24
|
Vorburger SA, Pataer A, Swisher SG and
Hunt KK: Gene therapy for cancer. Humana Press; Totowa, NJ:
2007
|
25
|
Potten CS, Wilson JW and Booth C:
Apoptosis genes. Kluwer Academic; Boston: 1998
|
26
|
Arroyo JA, Li C, Schlabritz-Loutsevitch N,
McDonald T, Nathanielsz P and Galan HL: Increased placental XIAP
and caspase 3 is associated with increased placental apoptosis in a
baboon model of maternal nutrient reduction. Am J Obstet Gynecol.
203(364): e13–8. 2010.
|
27
|
Hörnle M, Peters N, Thayaparasingham B,
Vörsmann H, Kashkar H and Kulms D: Caspase-3 cleaves XIAP in a
positive feedback loop to sensitize melanoma cells to TRAIL-induced
apoptosis. Oncogene. 30:575–587. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu Y, Zhou ZG, Zhou B, Wang R, Yan H and
Li Y: Downregulation of GRP78 and XIAP is correlated with apoptosis
during cerulein-induced acute pancreatitis in rats via regulation
of caspase activation. Mol Med Rep. 7:725–730. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cheng YJ, Jiang HS, Hsu SL, Lin LC, Wu CL,
Ghanta VK and Hsueh CM: XIAP-mediated protection of H460 lung
cancer cells against cisplatin. Eur J Pharmacol. 627:75–84. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Danquah M, Duke CB III, Patil R, Miller DD
and Mahato RI: Combination therapy of antiandrogen and XIAP
inhibitor for treating advanced prostate cancer. Pharm Res.
29:2079–2091. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
de Moraes Nestal G, Vasconcelos FC, Delbue
D, Mognol GP, Sternberg C, Viola JP and Maia RC: Doxorubicin
induces cell death in breast cancer cells regardless of Survivin
and XIAP expression levels. Eur J Cell Biol. 92:247–256. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Castells M, Milhas D, Gandy C, Thibault B,
Rafii A, Delord JP and Couderc B: Microenvironment mesenchymal
cells protect ovarian cancer cell lines from apoptosis by
inhibiting XIAP inactivation. Cell Death Dis. 4:e8872013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zai HY, Yi XP, Li YX, You XY, Cao LP and
Liu H: X-linked inhibitor of apoptosis protein (XIAP) and Survivin
suppression on human pancreatic cancer cells Panc-1 proliferation
and chemosensitivety. Beijing da xue xue Bao. 45:242–249.
2013.PubMed/NCBI
|
34
|
Ning ZR, Li S, Guo YW and Fang DJ:
Expression and clinical significance of Cox-2 and XIAP in malignant
tumors of the salivary gland. Shanghai Kou Qiang Yi Xue.
23:317–321. 2014.PubMed/NCBI
|
35
|
Spahn A, Blondeau N, Heurteaux C, Dehghani
F and Rami A: Concomitant transitory up-regulation of X-linked
inhibitor of apoptosis protein (XIAP) and the heterogeneous nuclear
ribonucleoprotein C1-C2 in surviving cells during neuronal
apoptosis. Neurochem Res. 33:1859–1868. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Holt SV, Brookes KE, Dive C and Makin GW:
Down-regulation of XIAP by AEG35156 in paediatric tumour cells
induces apoptosis and sensitises cells to cytotoxic agents. Oncol
Rep. 25:1177–1181. 2011.PubMed/NCBI
|
37
|
Yan Y, Mahotka C, Heikaus S, Shibata T,
Wethkamp N, Liebmann J, Suschek CV, Guo Y, Gabbert HE, Gerharz CD
and Ramp U: Disturbed balance of expression between XIAP and
Smac/DIABLO during tumour progression in renal cell carcinomas. Br
J Cancer. 91:1349–1357. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tamm I, Kornblau SM, Segall H, Krajewski
S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, et al:
Expression and prognostic significance of IAP-family genes in human
cancers and myeloid leukemias. Clin Cancer Res. 6:1796–1803.
2000.PubMed/NCBI
|
39
|
Ramp U, Caliskan E, Mahotka C, Krieg A,
Heikaus S, Gabbert HE and Gerharz CD: Apoptosis induction in renal
cell carcinoma by TRAIL and gamma-radiation is impaired by
deficient caspase-9 cleavage. Br J Cancer. 88:1800–1807. 2003.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Ng CP, Zisman A and Bonavida B: Synergy is
achieved by complementation with Apo2L/TRAIL and actinomycin D in
Apo2L/TRAIL-mediated apoptosis of prostate cancer cells: Role of
XIAP in resistance. Prostate. 53:286–299. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Flanagan L, Sebastia J, Delgado ME, Lennon
JC and Rehm M: Dimerization of Smac is crucial for its
mitochondrial retention by XIAP subsequent to mitochondrial outer
membrane permeabilization. Biochim Biophys Acta. 1813:819–826.
2011. View Article : Google Scholar : PubMed/NCBI
|