1
|
Zhao P, Dai M, Chen W and Li N: Cancer
trends in China. Jpn J Clin Oncol. 40:281–285. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lu J, Getz G, Miska EA, Alvarez-Saavedra
E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA,
et al: MicroRNA expression profiles classify human cancers. Nature.
435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee YS and Dutta A: The tumor suppressor
microRNA let-7 represses the HMGA2 oncogene. Genes Dev.
21:1025–1030. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bonci D, Coppola V, Musumeci M, Addario A,
Giuffrida R, Memeo L, D'Urso L, Pagliuca A, Biffoni M, Labbaye C,
et al: The miR-15a-miR-16-1 cluster controls prostate cancer by
targeting multiple oncogenic activities. Nat Med. 14:1271–1277.
2008. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Landgraf P, Rusu M, Sheridan R, Sewer A,
Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M,
et al: A mammalian microRNA expression atlas based on small RNA
library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ellis KL, Cameron VA, Troughton RW,
Frampton CM, Ellmers LJ and Mark RA: Circulating microRNAs as
candidate markers to distinguish heart failure in breathless
patients. Eur J Heart Fail. 15:1138–1147. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yu D, Zhou H, Xun Q, Xu X, Ling J and Hu
Y: microRNA-103 regulates the growth and invasion of endometrial
cancer cells through the downregulation of tissue inhibitor of
metalloproteinase 3. Oncol Lett. 3:1221–1226. 2012.PubMed/NCBI
|
11
|
Annibali D, Gioia U, Savino M, Laneve P,
Caffarelli E and Nasi S: A new module in neural differentiation
control: Two microRNAs upregulated by retinoic acid, miR-9 and
−103, target the differentiation inhibitor ID2. PLoS One.
7:e402692012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Weber DG, Johnen G, Bryk O, Jöckel KH and
Brüning T: Identification of miRNA-103 in the cellular fraction of
human peripheral blood as a potential biomarker for malignant
mesothelioma-a pilot study. PLoS One. 7:e302212012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hong Z, Feng Z, Sai Z and Tao S: PER3, a
novel target of miR-103, plays a suppressive role in colorectal
cancer in vitro. BMB Rep. 47:500–505. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mazzoccoli G, Panza A, Valvano MR, Palumbo
O, Carella M, Pazienza V, Biscaglia G, Tavano F, Di Sebastiano P,
Andriulli A and Piepoli A: Clock gene expression levels and
relationship with clinical and pathological features in colorectal
cancer patients. Chronobiol Int. 28:841–851. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang Y, Qu X, Li C, Fan Y, Che X, Wang X,
Cai Y, Hu X and Liu Y: miR-103/107 modulates multidrug resistance
in human gastric carcinoma by downregulating Cav-1. Tumour Biol.
36:2277–2285. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Brewster BL, Rossiello F, French JD,
Edwards SL, Wong M, Wronski A, Whiley P, Waddell N, Chen X, Bove B,
et al: Identification of fifteen novel germline variants in the
BRCA1 3′UTR reveals a variant in a breast cancer case that
introduces a functional miR-103 target site. Hum Mutat.
33:1665–1675. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen HY, Lin YM, Chung HC, Lang YD, Lin
CJ, Huang J, Wang WC, Lin FM, Chen Z, Huang HD, et al: miR-103/107
promote metastasis of colorectal cancer by targeting the metastasis
suppressors DAPK and KLF4. Cancer Res. 72:3631–3641. 2012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Trajkovski M, Hausser J, Soutschek J, Bhat
B, Akin A, Zavolan M, Heim MH and Stoffel M: MicroRNAs 103 and 107
regulate insulin sensitivity. Nature. 474:649–653. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chai Z, Goodenough DA and Paul DL: Cx50
requires an intact PDZ-binding motif and ZO-1 for the formation of
functional intercellular channels. Mol Biol Cell. 22:4503–4512.
2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Giri S, Poindexter KM, Sundar SN and
Firestone GL: Arecoline induced disruption of expression and
localization of the tight junctional protein ZO-1 is dependent on
the HER 2 expression in human endometrial Ishikawa cells. BMC Cell
Biol. 11:532010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kawauchiya T, Takumi R, Kudo Y, Takamori
A, Sasagawa T, Takahashi K and Kikuchi H: Correlation between the
destruction of tight junction by patulin treatment and increase of
phosphorylation of ZO-1 in Caco-2 human colon cancer cells. Toxicol
Lett. 205:196–202. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Van Itallie CM, Balda MS and Anderson JM:
Epidermal growth factor induces tyrosine phosphorylation and
reorganization of the tight junction protein ZO-1 in A431 cells. J
Cell Sci. 108:1735–1742. 1995.PubMed/NCBI
|
24
|
Antonetti DA, Barber AJ, Hollinger LA,
Wolpert EB and Gardner TW: Vascular endothelial growth factor
induces rapid phosphorylation of tight junction proteins occludin
and zonula occluden 1. A potential mechanism for vascular
permeability in diabetic retinopathy and tumors. J Biol Chem.
274:23463–23467. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Németh Z, Szász AM, Somorácz A, Tátrai P,
Németh J, Gyorffy H, Szíjártó A, Kupcsulik P, Kiss A and Schaff Z:
Zonula occludens-1, occludin and E-cadherin protein expression in
biliary tract cancers. Pathol Oncol Res. 15:533–539. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Martin TA, Watkins G, Mansel RE and Jiang
WG: Loss of tight junction plaque molecules in breast cancer
tissues is associated with a poor prognosis in patients with breast
cancer. Eur J Cancer. 40:2717–2725. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhu H, Lu J, Wang X, Zhang H, Tang X, Zhu
J and Mao Y: Upregulated ZO-1 correlates with favorable survival of
gastrointestinal stromal tumor. Med Oncol. 30:6312013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Orbán E, Szabó E, Lotz G, Kupcsulik P,
Páska C, Schaff Z and Kiss A: Different expression of occludin and
ZO-1 in primary and metastatic liver tumors. Pathol Oncol Res.
14:299–306. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ni S, Xu L, Huang J, Feng J, Zhu H, Wang G
and Wang X: Increased ZO-1 expression predicts valuable prognosis
in non-small cell lung cancer. Int J Clin Exp Pathol. 6:2887–2895.
2013.PubMed/NCBI
|