1
|
Bhandari A and Bhandari V: Pitfalls,
problems, and progress in bronchopulmonary dysplasia. Pediatrics.
123:1562–1573. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Niedermaier S and Hilgendorff A:
Bronchopulmonary dysplasia-an overview about pathophysiologic
concepts. Mol Cell Pediatr. 2:22015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Li Q, Wall SB, Ren C, Velten M, Hill CL,
Locy ML, Rogers LK and Tipple TE: Thioredoxin reductase inhibition
attenuates neonatal hyperoxic lung injury and enhances nuclear
factor E2-Related Factor 2 activation. Am J Respir Cell Mol Biol.
55:419–428. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ali Z, Schmidt P, Dodd J and Jeppesen DL:
Bronchopulmonary dysplasia: A review. Arch Gynecol Obstet.
288:325–333. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yang Y, Fu W, Chen J, Olashaw N, Zhang X,
Nicosia SV, Bhalla K and Bai W: SIRT1 sumoylation regulates its
deacetylase activity and cellular response to genotoxic stress. Nat
Cell Biol. 9:1253–1262. 2007. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Chang HC and Guarente L: SIRT1 mediates
central circadian control in the SCN by a mechanism that decays
with aging. Cell. 153:1448–1460. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ou X, Lee MR, Huang X, Messina-Graham S
and Broxmeyer HE: SIRT1 positively regulates autophagy and
mitochondria function in embryonic stem cells under oxidative
stress. Stem Cells. 32:1183–1194. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ruan Y, Dong C, Patel J, Duan C, Wang X,
Wu X, Cao Y, Pu L, Lu D, Shen T and Li J: SIRT1 suppresses
doxorubicin-induced cardiotoxicity by regulating the oxidative
stress and p38MAPK pathways. Cell Physiol Biochem. 35:1116–1124.
2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hori YS, Kuno A, Hosoda R and Horio Y:
Regulation of FOXOs and p53 by SIRT1 modulators under oxidative
stress. PLoS One. 8:e738752013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Y, Wang P, Yang X, Wang W, Zhang J, He
Y, Zhang W, Jing T, Wang B and Lin R: SIRT1 inhibits inflammatory
response partly through regulation of NLRP3 inflammasome in
vascular endothelial cells. Mol Immunol. 77:148–156. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kong X, Guan J, Li J, Wei J and Wang R:
P66Shc-SIRT1 regulation of oxidative stress protects against
cardio-cerebral vascular disease. Mol Neurobiol. 54:5277–5285.
2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang C, Li Q, Kang L, Lei X, Zhai X, Zhao
S, Zhang C and Dong W: Resveratrol inhibits hyperxia-induced cell
apoptosis through up-regulating SIRT1 expression in HPAECs. Xi Bao
Yu Fen Zi Mian Yi Xue Za Zhi. 31:590–595. 2015.(In Chinese).
PubMed/NCBI
|
13
|
Yang X, Dong W, Li Q, Kang L, Lei X, Zhang
L, Lu Y and Zhai X: Hyperoxia induces reactive oxygen species
production and promotes SIRT1 nucleocytoplasmic shuttling of
peripheral blood mononuclear cells in premature infants in vitro.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 31:1669–1676. 2015.(In
Chinese). PubMed/NCBI
|
14
|
Feligioni M and Nistico R: SUMO: A
(oxidative) stressed protein. Neuromolecular Med. 15:707–719. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang W and Paschen W: SUMO proteomics to
decipher the SUMO-modified proteome regulated by various diseases.
Proteomics. 15:1181–1191. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chymkowitch P, Nguéa PA and Enserink JM:
SUMO-regulated transcription: Challenging the dogma. Bioessays.
37:1095–1105. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sriramachandran AM and Dohmen RJ:
SUMO-targeted ubiquitin ligases. Biochim Biophys Acta. 1843:75–85.
2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Agbor TA and Taylor CT: SUMO, hypoxia and
the regulation of metabolism. Biochem Soc Trans. 36:445–448. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Enserink JM: Sumo and the cellular stress
response. Cell Div. 10:42015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mody K, Saslow JG, Kathiravan S, Eydelman
R, Bhat V, Stahl GE, Pyon K, Bhandari V and Aghai ZH: Sirtuin1 in
tracheal aspirate leukocytes: Possible role in the development of
bronchopulmonary dysplasia in premature infants. J Matern Fetal
Neonatal Med. 25:1483–1487. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang W, Xu L, Zhou X, Gao C, Yang M, Chen
G, Zhu J, Jiang L, Gan H, Gou F, et al: High glucose induces
activation of NF-κB inflammatory signaling through IκBα sumoylation
in rat mesangial cells. Biochem Biophys Res Commun. 438:568–574.
2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yuan H, Zhou J, Deng M, Liu X, Le Bras M,
de The H, Chen SJ, Chen Z, Liu TX and Zhu J: Small
ubiquitin-related modifier paralogs are indispensable but
functionally redundant during early development of zebrafish. Cell
Res. 20:185–196. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Huang YX, Zhao J, Song QH, Zheng LH, Fan
C, Liu TT, Bao YL, Sun LG, Zhang LB and Li YX: Virtual screening
and experimental validation of novel histone deacetylase
inhibitors. BMC Pharmacol Toxicol. 17:322016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li Y, Ni J, Guo R and Li W: In patients
with coronary artery disease and type 2 diabetes, SIRT1 expression
in circulating mononuclear cells is associated with levels of
inflammatory cytokines but not with coronary lesions. Biomed Res
Int. 2016:87348272016.PubMed/NCBI
|
25
|
Zhu Y, Sun Y, Guan W, Yan Y, Zhang W, Bai
L, Kong H and Li F: Lycium barbarum polysaccharides enhances SIRT1
expression and decreases MMP-9 and HIF-1α expressions in hypoxic
pulmonary vascular smooth muscle cells. Xi Bao Yu Fen Zi Mian Yi
Xue Za Zhi. 32:906–910. 2016.(In Chinese). PubMed/NCBI
|
26
|
Xue F, Huang JW, Ding PY, Zang HG, Kou ZJ,
Li T, Fan J, Peng ZW and Yan WJ: Nrf2/antioxidant defense pathway
is involved in the neuroprotective effects of Sirt1 against focal
cerebral ischemia in rats after hyperbaric oxygen preconditioning.
Behav Brain Res. 309:1–8. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cetinkaya M, Cansev M, Cekmez F, Tayman C,
Canpolat FE, Kafa IM, Yaylagul EO, Kramer BW and Sarici SU:
Protective effects of valproic acid, a histone deacetylase
inhibitor, against hyperoxic lung injury in a neonatal rat model.
PLoS One. 10:e01260282015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Korfei M, Skwarna S, Henneke I, MacKenzie
B, Klymenko O, Saito S, Ruppert C, von der Beck D, Mahavadi P,
Klepetko W, et al: Aberrant expression and activity of histone
deacetylases in sporadic idiopathic pulmonary fibrosis. Thorax.
70:1022–1032. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Conti V, Corbi G, Manzo V, Pelaia G,
Filippelli A and Vatrella A: Sirtuin 1 and aging theory for chronic
obstructive pulmonary disease. Anal Cell Pathol (Amst).
2015:8973272015.PubMed/NCBI
|
30
|
Ahmad T, Sundar IK, Tormos AM, Lerner CA,
Gerloff J, Yao H and Rahman I: Shelterin telomere protection
protein 1 reduction causes telomere attrition and cellular
senescence via sirtuin 1 deacetylase in chronic obstructive
pulmonary disease. Am J Respir Cell Mol Biol. 56:38–49. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu HY, Li QR, Cheng XF, Wang GJ and Hao
HP: NAMPT inhibition synergizes with NQO1-targeting agents in
inducing apoptotic cell death in non-small cell lung cancer cells.
Chin J Nat Med. 14:582–589. 2016.PubMed/NCBI
|
32
|
Han X, Niu J, Zhao Y, Kong Q, Tong T and
Han L: HDAC4 stabilizes SIRT1 via sumoylation SIRT1 to delay
cellular senescence. Clin Exp Pharmacol Physiol. 43:41–46. 2016.
View Article : Google Scholar : PubMed/NCBI
|