1
|
Berteau O and Mulloy B: Sulfated fucans,
fresh perspectives: Structures, functions and biological properties
of sulfated fucans and an overview of enzymes active toward this
class of polysaccharide. Glycobiology. 13:29R–40R. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mourão PA and Pereira MS: Searching for
alternatives to heparin: Sulfated fucans from marine invertebrates.
Trends Cardiovasc Med. 9:225–232. 1999. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kuznetsova TA, Besednova NN, Mamaev AN,
Momot AP, Shevchenko NM and Zvyagintseva TN: Anticoagulant activity
of fucoidan from brown algae fucus evanescens of the okhotsk sea.
Bull Exp Biol Med. 136:471–473. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mourão PA: Use of sulfated fucans as
anticoagulant and antithrombotic agents: Future perspectives. Curr
Pharm Des. 10:967–981. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Teng H, Yang Y, Wei H, Liu Z, Liu Z, Ma Y,
Gao Z, Hou L and Zou X: Fucoidan suppresses hypoxia-induced
lymphangiogenesis and lymphatic metastasis in mouse
hepatocarcinoma. Mar Drugs. 13:3514–3530. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yoshimoto M, Higaki K, Nanba E and
Ikeguchi M: Anti-proliferation activity of fucoidan in MKN45
gastric cancer cells and downregulation of phosphorylated ASK1, a
cell cycle-regulated kinase. Yonago Acta Med. 58:1–7.
2015.PubMed/NCBI
|
7
|
Han YS, Lee JH and Lee SH: Fucoidan
inhibits the migration and proliferation of HT-29 human colon
cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic
target of rapamycin pathways. Mol Med Rep. 12:3446–3452. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Maruyama H, Tamauchi H, Iizuka M and
Nakano T: The role of NK cells in antitumor activity of dietary
fucoidan from Undaria pinnatifida sporophylls (Mekabu). Planta Med.
72:1415–1417. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Riou D, Colliec-Jouault S, du Sel Pinczon
D, Bosch S, Siavoshian S, Le Bert V, Tomasoni C, Sinquin C, Durand
P, Roussakis C, et al: Antitumor and antiproliferative effects of a
fucan extracted from ascophyllum nodosum against a non-small-cell
bronchopulmonary carcinoma line. Anticancer Res. 16:1213–1218.
1996.PubMed/NCBI
|
10
|
Koyanagi S, Tanigawa N, Nakagawa H, Soeda
S and Shimeno H: Oversulfation of fucoidan enhances its
anti-angiogenic and antitumor activities. Biochem Pharmacol.
65:173–179. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Teas J: The consumption of seaweed as a
protective factor in the etiology of breast cancer. Med Hypotheses.
7:601–613. 1981. View Article : Google Scholar : PubMed/NCBI
|
12
|
Vishchuk OS, Ermakova SP and Zvyagintseva
TN: The fucoidans from brown algae of Far-Eastern seas: Anti-tumor
activity and structure-function relationship. Food Chem.
141:1211–1217. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tsai HL, Tai CJ, Huang CW, Chang FR and
Wang JY: Efficacy of low-molecular-weight fucoidan as a
supplemental therapy in metastatic colorectal cancer patients: A
double-blind randomized controlled trial. Mar Drugs. 15:E1222017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Brini M, Ottolini D, Cali T and Carafoli
E: Calcium in health and disease. Metal Ions Life Sci. 13:81–137.
2013. View Article : Google Scholar
|
15
|
Huang W, Lu C, Wu Y, Ouyang S and Chen Y:
T-type calcium channel antagonists, mibefradil and NNC-55-0396
inhibit cell proliferation and induce cell apoptosis in leukemia
cell lines. J Exp Clin Cancer Res. 34:542015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yu W, Wang P, Ma H, Zhang G, Yulin Z, Lu
B, Wang H and Dong M: Suppression of T-type Ca2+ channels inhibited
human laryngeal squamous cell carcinoma cell proliferation running
title: Roles of T-type Ca2+ channels in LSCC cell proliferation.
Clin Lab. 60:621–628. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kao TJ and Millette CF: L-type
voltage-operated Ca(+2) channels modulate transient Ca(+2) influx
triggered by activation of Sertoli cell surface L-selectin. J Cell
Biochem. 101:1023–1037. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
van Tits LJ, Hak-Lemmers HL, Demacker PN,
Stalenhoef AF and Willems PH: Oxidized low-density lipoprotein
induces calcium influx in polymorphonuclear leukocytes. Free Radic
Biol Med. 29:747–755. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang JZ, McBride JW and Yu XJ: L-selectin
and E-selectin expressed on monocytes mediating Ehrlichia
chaffeensis attachment onto host cells. FEMS Microbiol Lett.
227:303–309. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Meisenberg A, Kaschuba D, Balfanz S,
Jordan N and Baumann A: Molecular and functional profiling of
histamine receptor-mediated calcium ion signals in different cell
lines. Anal Biochem. 486:96–101. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pulli I, Blom T, Löf C, Magnusson M,
Rimessi A, Pinton P and Törnquist K: A novel chimeric aequorin
fused with caveolin-1 reveals a sphingosine kinase 1-regulated
Ca2+ microdomain in the caveolar compartment. Biochim
Biophys Acta. 1853:2173–2182. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sun J, Wang J, Chen P, Feng X, Du W and
Liu BF: A chemical signal generator for resolving temporal dynamics
of single cells. Anal Bioanal Chem. 400:2973–2981. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Park KS, Lee HY, Lee SY, Kim MK, Kim SD,
Kim JM, Yun J, Im DS and Bae YS: Lysophosphatidylethanolamine
stimulates chemotactic migration and cellular invasion in SK-OV3
human ovarian cancer cells: Involvement of pertussis
toxin-sensitive G-protein coupled receptor. FEBS Lett.
581:4411–4416. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mousli M, Bronner C, Landry Y, Bockaert J
and Rouot B: Direct activation of GTP-binding regulatory proteins
(G-proteins) by substance P and compound 48/80. FEBS Lett.
259:260–262. 1990. View Article : Google Scholar : PubMed/NCBI
|
25
|
Higashijima T, Uzu S, Nakajima T and Ross
EM: Mastoparan, a peptide toxin from wasp venom, mimics receptors
by activating GTP-binding regulatory proteins (G proteins). J Biol
Chem. 263:6491–6494. 1988.PubMed/NCBI
|
26
|
Davies-Cox EV, Laffafian I and Hallett MB:
Control of Ca2+ influx in human neutrophils by inositol
1,4,5-trisphosphate (IP3) binding: Differential effects of
micro-injected IP3 receptor antagonists. Biochem J. 355:139–143.
2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tortorici G, Zhang BX, Xu X and Muallem S:
Compartmentalization of Ca2+ signaling and
Ca2+ pools in pancreatic acini. Implications for the
quantal behavior of Ca2+ release. J Biol Chem.
269:29621–29628. 1994.PubMed/NCBI
|
28
|
Hill SJ, Ganellin CR, Timmerman H,
Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R and Haas HL:
International Union of Pharmacology. XIII. Classification of
histamine receptors. Pharmacol Rev. 49:253–278. 1997.PubMed/NCBI
|
29
|
Bootman MD, Berridge MJ and Taylor CW:
All-or-nothing Ca2+ mobilization from the intracellular
stores of single histamine-stimulated HeLa cells. J Physiol.
450:163–178. 1992. View Article : Google Scholar : PubMed/NCBI
|
30
|
Thorn P: Ca2+ influx during
agonist and Ins(2,4,5)P3-evoked Ca2+ oscillations in
HeLa epithelial cells. J Physiol. 482:275–281. 1995. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sauve R, Simoneau C, Parent L, Monette R
and Roy G: Oscillatory activation of calcium-dependent potassium
channels in HeLa cells induced by histamine H1 receptor
stimulation: A single-channel study. J Membr Biol. 96:199–208.
1987. View Article : Google Scholar : PubMed/NCBI
|
32
|
Volpi M and Berlin RD: Intracellular
elevations of free calcium induced by activation of histamine H1
receptors in interphase and mitotic HeLa cells: Hormone signal
transduction is altered during mitosis. J Cell Biol. 107:2533–2539.
1988. View Article : Google Scholar : PubMed/NCBI
|
33
|
Koibuchi Y, Ichikawa A, Nakagawa M and
Tomita K: Histamine release induced from mast cells by active
components of compound 48/80. Eur J Pharmacol. 115:163–170. 1985.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Khakh BS, Burnstock G, Kennedy C, King BF,
North RA, Séguéla P, Voigt M and Humphrey PP: International union
of pharmacology. XXIV. Current status of the nomenclature and
properties of P2X receptors and their subunits. Pharmacol Rev.
53:107–118. 2001.PubMed/NCBI
|
35
|
Abbracchio MP, Burnstock G, Boeynaems JM,
Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C,
Jacobson KA and Weisman GA: International union of pharmacology
LVIII: Update on the P2Y G protein-coupled nucleotide receptors:
From molecular mechanisms and pathophysiology to therapy.
Pharmacolo Rev. 58:281–341. 2006. View Article : Google Scholar
|
36
|
Gavazzo P, Morelli E and Marchetti C:
Susceptibility of insulinoma cells to cadmium and modulation by
L-type calcium channels. Biometals. 18:131–142. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu H, Gao SB, Sakurai T and Terakawa S:
Fucoidan suppresses endocytosis in cultured HeLa cells. Chin J
Integr Med. Aug 18–2011.(Epub ahead of print). View Article : Google Scholar
|