Role of innate lymphoid cells in obesity and metabolic disease (Review)
- Authors:
- Jirakrit Saetang
- Surasak Sangkhathat
-
Affiliations: Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand, Tumor Biology Research Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand - Published online on: November 13, 2017 https://doi.org/10.3892/mmr.2017.8038
- Pages: 1403-1412
-
Copyright: © Saetang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Boulangé CL, Neves AL, Chilloux J, Nicholson JK and Dumas ME: Impact of the gut microbiota on inflammation, obesity and metabolic disease. Genome Med. 8:422016. View Article : Google Scholar : PubMed/NCBI | |
Lu Y and Loos RJ: Obesity genomics: Assessing the transferability of susceptibility loci across diverse populations. Genome Med. 5:552013. View Article : Google Scholar : PubMed/NCBI | |
Westerterp KR and Plasqui G: Physically active lifestyle does not decrease the risk of fattening. PLoS One. 4:e47452009. View Article : Google Scholar : PubMed/NCBI | |
DiNicolantonio JJ, O'Keefe JH and Lucan SC: Added fructose: A principal driver of type 2 diabetes mellitus and its consequences. Mayo Clin Proc. 90:372–381. 2015. View Article : Google Scholar : PubMed/NCBI | |
DiNicolantonio JJ, Lucan SC and O'Keefe JH: The evidence for saturated fat and for sugar related to coronary heart disease. Prog Cardiovasc Dis. 58:464–472. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gregor MF and Hotamisligil GS: Inflammatory mechanisms in obesity. Annu Rev Immunol. 29:415–445. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sell H, Habich C and Eckel J: Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol. 8:709–716. 2012. View Article : Google Scholar : PubMed/NCBI | |
Purkayastha S and Cai D: Neuroinflammatory basis of metabolic syndrome. Mol Metab. 2:356–363. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, et al: Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 56:1761–1772. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Yang W, Tian Z, van Velkinburgh JC, Song J, Wu Y and Ni B: Innate lymphoid cells as novel regulators of obesity and its-associated metabolic dysfunction. Obes Rev. 17:485–498. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hotamisligil GS: Inflammation and metabolic disorders. Nature. 444:860–867. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H and Flier JS: TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 116:3015–3025. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD and Gordon JI: Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 102:11070–11075. 2005. View Article : Google Scholar : PubMed/NCBI | |
Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo MR, Phillips RS, et al: Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 41:296–310. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, et al: Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 4:232–241. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sekirov I, Russell SL, Antunes LC and Finlay BB: Gut microbiota in health and disease. Physiol Rev. 90:859–904. 2010. View Article : Google Scholar : PubMed/NCBI | |
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al: A core gut microbiome in obese and lean twins. Nature. 457:480–484. 2009. View Article : Google Scholar : PubMed/NCBI | |
Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL and Marsland BJ: Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 20:159–166. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ley RE, Turnbaugh PJ, Klein S and Gordon JI: Microbial ecology: Human gut microbes associated with obesity. Nature. 444:1022–1023. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C and Hardt PD: Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 18:190–195. 2010. View Article : Google Scholar : PubMed/NCBI | |
Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P and Flint HJ: Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 32:1720–1724. 2008. View Article : Google Scholar : PubMed/NCBI | |
Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G and Pacheco-López G: The microbiota-gut-brain axis: Neurobehavioral correlates, health and sociality. Front Integr Neurosci. 7:702013. View Article : Google Scholar : PubMed/NCBI | |
Harris K, Kassis A, Major G and Chou CJ: Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes. 2012:8791512012. View Article : Google Scholar : PubMed/NCBI | |
Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen S, et al: Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Mol Med. 3:559–572. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cox LM and Blaser MJ: Pathways in microbe-induced obesity. Cell Metab. 17:883–894. 2013. View Article : Google Scholar : PubMed/NCBI | |
Burcelin R, Garidou L and Pomié C: Immuno-microbiota cross and talk: The new paradigm of metabolic diseases. Semin Immunol. 24:67–74. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eagle Red A and Chawla A: In obesity and weight loss, all roads lead to the mighty macrophage. J Clin Invest. 120:3437–3440. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, Schoenfelt KQ, Kuzma JN, Larson I, Billing PS, et al: Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20:614–625. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ and Ferrante AW Jr: Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18:816–830. 2013. View Article : Google Scholar : PubMed/NCBI | |
Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S and Mathis D: Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 15:930–939. 2009. View Article : Google Scholar : PubMed/NCBI | |
Strissel KJ, DeFuria J, Shaul ME, Bennett G, Greenberg AS and Obin MS: T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity (Silver Spring). 18:1918–1925. 2010. View Article : Google Scholar : PubMed/NCBI | |
Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, et al: Innate lymphoid cells – a proposal for uniform nomenclature. Nat Rev Immunol. 13:145–149. 2013. View Article : Google Scholar : PubMed/NCBI | |
Spits H and Cupedo T: Innate lymphoid cells: Emerging insights in development, lineage relationships and function. Annu Rev Immunol. 30:647–675. 2012. View Article : Google Scholar : PubMed/NCBI | |
Artis D and Spits H: The biology of innate lymphoid cells. Nature. 517:293–301. 2015. View Article : Google Scholar : PubMed/NCBI | |
Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, Chapman A, Smith CH, Di Meglio P and Nestle FO: Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol. 134:984–991. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fuchs A and Colonna M: Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumors of the gastrointestinal tract. Curr Opin Gastroenterol. 29:581–587. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cortez VS, Robinette ML and Colonna M: Innate lymphoid cells: New insights into function and development. Curr Opin Immunol. 32:71–77. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cortez VS and Colonna M: Diversity and function of group 1 innate lymphoid cells. Immunol Lett. 179:19–24. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun JC and Lanier LL: NK cell development, homeostasis and function: Parallels with CD8+ T cells. Nat Rev Immunol. 11:645–657. 2011. View Article : Google Scholar : PubMed/NCBI | |
Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, Gilfillan S and Colonna M: Immunological Genome Consortium: Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol. 16:306–317. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M and Colonna M: Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity. 38:769–781. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM and Ugolini S: Innate or adaptive immunity? The example of natural killer cells. Science. 331:44–49. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cichicki F, Schlums H, Theorell J, Tesi B, Miller JS, Ljunggren HG and Bryceson YT: Diversification and functional specialization of human NK cell subsets. Curr Top Microbiol Immunol. 395:63–94. 2016.PubMed/NCBI | |
Fuchs A: ILC1s in tissue inflammation and infection. Front Immunol. 7:1042016. View Article : Google Scholar : PubMed/NCBI | |
Gasteiger G, Fan X, Dikiy S, Lee SY and Rudensky AY: Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science. 350:981–985. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, Sun R, Yokoyama WM and Tian Z: Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest. 123:1444–1456. 2013. View Article : Google Scholar : PubMed/NCBI | |
Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, et al: Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 157:340–356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA, et al: T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med. 211:563–577. 2014. View Article : Google Scholar : PubMed/NCBI | |
Spits H, Bernink JH and Lanier L: NK cells and type 1 innate lymphoid cells: Partners in host defense. Nat Immunol. 17:758–764. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sonnenberg GF and Artis D: Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med. 21:698–708. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vivier E, Tomasello E, Baratin M, Walzer T and Ugolini S: Functions of natural killer cells. Nat Immunol. 9:503–510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Karta MR, Broide DH and Doherty TA: Insights into group 2 innate lymphoid cells in human airway disease. Curr Allergy Asthma Rep. 16:82016. View Article : Google Scholar : PubMed/NCBI | |
Walker JA, Barlow JL and McKenzie AN: Innate lymphoid cells – how did we miss them? Nat Rev Immunol. 13:75–87. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M and Diefenbach A: The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 37:634–648. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U, et al: Transcription factor RORα is critical for nuocyte development. Nat Immunol. 13:229–236. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H and Koyasu S: Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 463:540–544. 2010. View Article : Google Scholar : PubMed/NCBI | |
Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr, Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, et al: IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 464:1362–1366. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gentek R, Munneke JM, Helbig C, Blom B, Hazenberg MD, Spits H and Amsen D: Modulation of signal strength switches notch from an inducer of T cells to an inducer of ILC2. Front Immunol. 4:3342013. View Article : Google Scholar : PubMed/NCBI | |
Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ and Locksley RM: Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA. 107:11489–11494. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tait Wojno ED and Artis D: Innate lymphoid cells: Balancing immunity, inflammation and tissue repair in the intestine. Cell Host Microbe. 12:445–457. 2012. View Article : Google Scholar : PubMed/NCBI | |
Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, et al: Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 464:1367–1370. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wilhelm C, Turner JE, Van Snick J and Stockinger B: The many lives of IL-9: A question of survival? Nat Immunol. 13:637–641. 2012. View Article : Google Scholar : PubMed/NCBI | |
Doherty TA and Broide DH: Group 2 innate lymphoid cells: New players in human allergic diseases. J Investig Allergol Clin Immunol. 25:1–11; quiz 2p following 11. 2015.PubMed/NCBI | |
Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, Englezakis A, Barlow JL, Hams E, Scanlon ST, et al: MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity. 41:283–295. 2014. View Article : Google Scholar : PubMed/NCBI | |
Drake LY, Iijima K and Kita H: Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy. 69:1300–1307. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fajt ML, Gelhaus SL, Freeman B, Uvalle CE, Trudeau JB, Holguin F and Wenzel SE: Prostaglandin D2 pathway upregulation: Relation to asthma severity, control and TH2 inflammation. J Allergy Clin Immunol. 131:1504–1512. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Pappu R, Ramirez-Carrozzi V, Ota N, Caplazi P, Zhang J, Yan D, Xu M, Lee WP and Grogan JL: TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol. 7:730–740. 2014. View Article : Google Scholar : PubMed/NCBI | |
Motomura Y, Morita H, Moro K, Nakae S, Artis D, Endo TA, Kuroki Y, Ohara O, Koyasu S and Kubo M: Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity. 40:758–771. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, Freeman GJ, Sharpe AH and Akbari O: ICOS: ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis and induction of airway hyperreactivity. Immunity. 42:538–551. 2015. View Article : Google Scholar : PubMed/NCBI | |
Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie AN, et al: A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 210:2939–2950. 2013. View Article : Google Scholar : PubMed/NCBI | |
Molofsky AB, Van Gool F, Liang HE, Van Dyken SJ, Nussbaum JC, Lee J, Bluestone JA and Locksley RM: Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity. 43:161–174. 2015. View Article : Google Scholar : PubMed/NCBI | |
Walford HH and Doherty TA: Diagnosis and management of eosinophilic asthma: A US perspective. J Asthma Allergy. 7:53–65. 2014.PubMed/NCBI | |
Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A, Nambu A, Abe T, Kiyonari H, Matsumoto K, et al: IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci USA. 107:18581–18586. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, Dekruyff RH and Umetsu DT: Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol. 12:631–638. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K, Seale P and Artis D: Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 519:242–246. 2015. View Article : Google Scholar : PubMed/NCBI | |
Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, Chawla A and Locksley RM: Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med. 210:535–549. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hams E, Locksley RM, McKenzie AN and Fallon PG: Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J Immunol. 191:5349–5353. 2013. View Article : Google Scholar : PubMed/NCBI | |
Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N, Boyd A, Nutman TB, Urban JF Jr, Wang J, Ramalingam TR, et al: Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science. 343:432–437. 2014. View Article : Google Scholar : PubMed/NCBI | |
Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, et al: Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 29:958–970. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, Doherty JM, Mills JC and Colonna M: A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 457:722–725. 2009. View Article : Google Scholar : PubMed/NCBI | |
Satoh-Takayama N: Heterogeneity and diversity of group 3 innate lymphoid cells: New cells on the block. Int Immunol. 28:29–34. 2016.PubMed/NCBI | |
van de Pavert SA and Vivier E: Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. Int Immunol. 28:35–42. 2016.PubMed/NCBI | |
Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d'Hargues Y, Göppert N, Croxford AL, Waisman A, Tanriver Y and Diefenbach A: A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature. 494:261–265. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hepworth MR, Fung TC, Masur SH, Kelsen JR, McConnell FM, Dubrot J, Withers DR, Hugues S, Farrar MA, Reith W, et al: Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science. 348:1031–1035. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F, Di Santo JP and Eberl G: Lineage relationship analysis of RORγt+ innate lymphoid cells. Science. 330:665–669. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rankin LC, Groom JR, Chopin M, Herold MJ, Walker JA, Mielke LA, McKenzie AN, Carotta S, Nutt SL and Belz GT: The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol. 14:389–395. 2013. View Article : Google Scholar : PubMed/NCBI | |
Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, Littman DR and O'Shea JJ: Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med. 206:35–41. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hanash AM, Dudakov JA, Hua G, O'Connor MH, Young LF, Singer NV, West ML, Jenq RR, Holland AM, Kappel LW, et al: Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity. 37:339–350. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, Bogatyrev SR, Ismagilov RF, Pamer EG, Turnbaugh PJ and Chervonsky AV: Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature. 514:638–641. 2014. View Article : Google Scholar : PubMed/NCBI | |
Goto Y, Obata T, Kunisawa J, Sato S, Ivanov II, Lamichhane A, Takeyama N, Kamioka M, Sakamoto M, Matsuki T, et al: Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science. 345:12540092014. View Article : Google Scholar : PubMed/NCBI | |
Gladiator A, Wangler N, Trautwein-Weidner K and LeibundGut-Landmann S: Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol. 190:521–525. 2013. View Article : Google Scholar : PubMed/NCBI | |
Van Maele L, Carnoy C, Cayet D, Ivanov S, Porte R, Deruy E, Chabalgoity JA, Renauld JC, Eberl G, Benecke AG, et al: Activation of type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection. J Infect Dis. 210:493–503. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O and Powrie F: Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med. 210:917–931. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Bérard M, Kleinschek M, Cua D, Di Santo JP and Eberl G: RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 12:320–326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Taube C, Tertilt C, Gyülveszi G, Dehzad N, Kreymborg K, Schneeweiss K, Michel E, Reuter S, Renauld JC, Arnold-Schild D, et al: IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease. PLoS One. 6:e217992011. View Article : Google Scholar : PubMed/NCBI | |
Osborn O and Olefsky JM: The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 18:363–374. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jin C, Henao-Mejia J and Flavell RA: Innate immune receptors: Key regulators of metabolic disease progression. Cell Metab. 17:873–882. 2013. View Article : Google Scholar : PubMed/NCBI | |
Winer DA, Luck H, Tsai S and Winer S: The intestinal immune system in obesity and insulin resistance. Cell Metab. 23:413–426. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bostick JW and Zhou L: Innate lymphoid cells in intestinal immunity and inflammation. Cell Mol Life Sci. 73:237–252. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hashiguchi M, Kashiwakura Y, Kojima H, Kobayashi A, Kanno Y and Kobata T: IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells. Eur J Immunol. 45:876–885. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM and Chawla A: Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell. 160:74–87. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wensveen FM, Jelenčić V, Valentić S, Šestan M, Wensveen TT, Theurich S, Glasner A, Mendrila D, Štimac D, Wunderlich FT, et al: NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 16:376–385. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee BC, Kim MS, Pae M, Yamamoto Y, Eberlé D, Shimada T, Kamei N, Park HS, Sasorith S, Woo JR, et al: Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 23:685–698. 2016. View Article : Google Scholar : PubMed/NCBI | |
O'Sullivan TE, Rapp M, Fan X, Weizman OE, Bhardwaj P, Adams NM, Walzer T, Dannenberg AJ and Sun JC: Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity. 45:428–441. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, Iwakura Y, Israel E, Bolger K, Faul J, et al: IL-17 producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 20:54–61. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ota N, Manzanillo P, Kates L, Zavala-Solorio J, Eidenschenk C, Zhang J, Lesch J, Lee WP, Ross J, et al: Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature. 514:237–241. 2014.PubMed/NCBI | |
Hasnain SZ, Borg DJ, Harcourt BE, Tong H, Sheng YH, Ng CP, Das I, Wang R, Chen AC, Loudovaris T, et al: Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat Med. 20:1417–1426. 2014. View Article : Google Scholar : PubMed/NCBI | |
Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, Lei H, Luk CT, Shi SY, Surendra A, et al: Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 21:527–542. 2015. View Article : Google Scholar : PubMed/NCBI | |
Garidou L, Pomié C, Klopp P, Waget A, Charpentier J, Aloulou M, Giry A, Serino M, Stenman L, Lahtinen S, et al: The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 22:100–112. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, Jobin C and Lund PK: High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One. 5:e121912010. View Article : Google Scholar : PubMed/NCBI | |
Hashiguchi M, Kashiwakura Y, Kojima H, Kobayashi A, Kanno Y and Kobata T: Peyer's patch innate lymphoid cells regulate commensal bacteria expansion. Immunol Lett. 165:1–9. 2015. View Article : Google Scholar : PubMed/NCBI | |
Veilleux A, Mayeur S, Bérubé JC, Beaulieu JF, Tremblay E, Hould FS, Bossé Y, Richard D and Levy E: Altered intestinal functions and increased local inflammation in insulin-resistant obese subjects: A gene-expression profile analysis. BMC Gastroenterol. 15:1192015. View Article : Google Scholar : PubMed/NCBI | |
Monteiro-Sepulveda M, Touch S, Mendes-Sá C, André S, Poitou C, Allatif O, Cotillard A, Fohrer-Ting H, Hubert EL, Remark R, et al: Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 22:113–124. 2015. View Article : Google Scholar : PubMed/NCBI | |
Johnson AM, Costanzo A, Gareau MG, Armando AM, Quehenberger O, Jameson JM and Olefsky JM: High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS One. 10:e01221952015. View Article : Google Scholar : PubMed/NCBI | |
Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D, et al: Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 158:705–721. 2014. View Article : Google Scholar : PubMed/NCBI |