1
|
Jin S, Yan Z, Yang T, Liu S, Liang W and
Hui Y: Eph-ephrin bidirectional signalling: A promising approach
for osteoporosis treatment. J Med Hypotheses Ideas. 7:40–42. 2013.
View Article : Google Scholar
|
2
|
Karsenty G and Wagner EF: Reaching a
genetic and molecular understanding of skeletal development. Dev
Cell. 2:389–406. 2002. View Article : Google Scholar
|
3
|
Matsuo K and Irie N: Osteoclast-osteoblast
communication. Arch Biochem Biophys. 473:201–209. 2008. View Article : Google Scholar
|
4
|
Rachner TD, Khosla S and Hofbauer LC:
Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011.
View Article : Google Scholar :
|
5
|
Sarrel PM, Lufkin EG, Oursler MJ and Keefe
D: Estrogen actions in arteries, bone and brain. Sci Med.
1:441994.
|
6
|
Nappi C, Bifulco G, Tommaselli GA, Gargano
V and Di Carlo C: Hormonal contraception and bone metabolism: A
systematic review. Contraception. 86:606–621. 2012. View Article : Google Scholar
|
7
|
Riggs BL: The mechanisms of estrogen
regulation of bone resorption. J Clin Invest. 106:1203–1204. 2000.
View Article : Google Scholar :
|
8
|
Eastell R: Role of oestrogen in the
regulation of bone turnover at the menarche. J Endocrinol.
185:223–234. 2005. View Article : Google Scholar
|
9
|
Zhou S, Turgeman G, Harris SE, Leitman DC,
Komm BS, Bodine PV and Gazit D: Estrogens activate bone
morphogenetic protein-2 gene transcription in mouse mesenchymal
stem cells. Mol Endocrinol. 17:56–66. 2003. View Article : Google Scholar
|
10
|
Hong L, Colpan A and Peptan IA:
Modulations of 17-beta estradiol on osteogenic and adipogenic
differentiations of human mesenchymal stem cells. Tissue Eng.
12:2747–2753. 2006. View Article : Google Scholar
|
11
|
Hong L, Colpan A, Peptan IA, Daw J, George
A and Evans CA: 17-Beta estradiol enhances osteogenic and
adipogenic differentiation of human adipose-derived stromal cells.
Tissue Eng. 13:1197–1203. 2007. View Article : Google Scholar
|
12
|
Irie N, Takada Y, Watanabe Y, Matsuzaki Y,
Naruse C, Asano M, Iwakura Y, Suda T and Matsuo K: Bidirectional
signaling through ephrinA2-EphA2 enhances osteoclastogenesis and
suppresses osteoblastogenesis. J Biol Chem. 284:14637–14644. 2009.
View Article : Google Scholar :
|
13
|
Difford J: A simplified method for the
preparation of methyl methacrylate embedding medium for
undecalcified bone. Med Lab Technol. 31:79–81. 1974.
|
14
|
Baron R, Vignery A, Neff L, Silverglate A
and Maria Santa A: Processing of undecalcified bone specimens for
bone histomorphometryBone Histomorphometry: Teachniques and
Interpretation. Recker R: CRC Press; Boca Raton, FL: 1983
|
15
|
Witwicka H, Hwang SY, Reyes-Gutierrez P,
Jia H, Odgren PE, Donahue LR, Birnbaum MJ and Odgren PR: Studies of
OC-STAMP in osteoclast fusion: A new knockout mouse model, rescue
of cell fusion and transmembrane topology. PLoS One.
10:e01282752015. View Article : Google Scholar :
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
17
|
Komori T, Yagi H, Nomura S, Yamaguchi A,
Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al:
Targeted disruption of Cbfa1 results in a complete lack of bone
formation owing to maturational arrest of osteoblasts. Cell.
89:755–764. 1997. View Article : Google Scholar
|
18
|
Ortuño MJ, Susperregui AR, Artigas N, Rosa
JL and Ventura F: Osterix induces Col1a1 gene expression through
binding to Sp1 sites in the bone enhancer and proximal promoter
regions. Bone. 52:548–556. 2013. View Article : Google Scholar
|
19
|
Simonet WS, Lacey DL, Dunstan CR, Kelley
M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, et
al: Osteoprotegerin: a novel secreted protein involved in the
regulation of bone density. Cell. 89:309–319. 1997. View Article : Google Scholar
|
20
|
Kong YY, Yoshida H, Sarosi I, Tan HL,
Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G,
Itie A, et al: OPGL is a key regulator of osteoclastogenesis,
lymphocyte development and lymph-node organogenesis. Nature.
397:315–323. 1999. View
Article : Google Scholar
|
21
|
Shuid AN, Ping LL, Muhammad N, Mohamed N
and Soelaiman IN: The effects of Labisia pumila var. alata on bone
markers and bone calcium in a rat model of post-menopausal
osteoporosis. J Ethnopharmacol. 133:538–542. 2011. View Article : Google Scholar
|
22
|
Zhao X, Wu ZX, Zhang Y, Yan YB, He Q, Cao
PC and Lei W: Anti-osteoporosis activity of cibotium barometz
extract on ovariectomy-induced bone loss in rats. J Ethnopharmacol.
137:1083–1088. 2011. View Article : Google Scholar
|
23
|
Notomi T, Okimoto N, Okazaki Y, Nakamura T
and Suzuki M: Tower climbing exercise started 3 months after
ovariectomy recovers bone strength of the femur and lumbar
vertebrae in aged osteopenic rats. J Bone Miner Res. 18:140–149.
2003. View Article : Google Scholar
|
24
|
Davidge ST, Zhang Y and Stewart KG: A
comparison of ovariectomy models for estrogen studies. Am J Physiol
Regul Integr Comp Physiol. 280:R904–R907. 2001.
|
25
|
Redick JH, Nussbaum AI and Mook DG:
Estradiol induced suppression of feeding in the female rat:
Dependence on body weight. Physiol Behav. 10:543–547. 1973.
View Article : Google Scholar
|
26
|
Bahlous A, Kalai E, Salah Hadj M, Bouzid K
and Zerelli L: Biochemical markers of bone remodeling: Recent data
of their applications in managing postmenopausal osteoporosis.
Tunis Med. 84:751–757. 2006.(In French).
|
27
|
Zheng MH, Lau TT, Prince R, Criddle A,
Wysocki S, Beilharz M, Papadimitriou JM and Wood DJ: 17
beta-estradiol suppresses gene expression of tartrate-resistant
acid phosphatase and carbonic anhydrase II in ovariectomized rats.
Calcif Tissue Int. 56:166–169. 1995. View Article : Google Scholar
|
28
|
Park JA, Ha SK, Kang TH, Oh MS, Cho MH,
Lee SY, Park JH and Kim SY: Protective effect of apigenin on
ovariectomy-induced bone loss in rats. Life Sci. 82:1217–1223.
2008. View Article : Google Scholar
|
29
|
Shimizu E, Tamasi J and Partridge NC:
Alendronate affects osteoblast functions by crosstalk through
EphrinB1-EphB. J Dent Res. 91:268–274. 2012. View Article : Google Scholar :
|
30
|
Matsuo K: Eph and ephrin interactions in
bone. Adv Exp Med Biol. 658:95–103. 2010. View Article : Google Scholar
|
31
|
Matsuo K and Otaki N: Bone cell
interactions through Eph/ephrin: Bone modeling, remodeling and
associated diseases. Cell Adh Migr. 6:148–156. 2012. View Article : Google Scholar :
|