1
|
Stromectol cleared by the U.S. Food and
Drug Administration to treat onchocerciasis. http://www.centerwatch.com/drug-information/fda-approved-drugs/drug/250/stromectol-ivermectin
|
2
|
Diawara L, Traoré MO, Badji A, Bissan Y,
Doumbia K, Goita SF, Konaté L, Mounkoro K, Sarr MD, Seck AF, et al:
Feasibility of onchocerciasis elimination with ivermectin treatment
in endemic foci in Africa: First evidence from studies in Mali and
Senegal. PLoS Negl Trop Dis. 3:e4972009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ottesen EA and Campbell WC: Ivermectin in
human medicine. J Antimicrob Chemother. 34:195–203. 1994.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Dueñas-González A, García-López P, Herrera
LA, Medina-Franco JL, González-Fierro A and Candelaria M: The
prince and the pauper. A tale of anticancer targeted agents. Mol
Cancer. 7:822008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Didier A and Loor F: The abamectin
derivative ivermectin is a potent P-glycoprotein inhibitor.
Anticancer Drugs. 7:745–751. 1996. View Article : Google Scholar : PubMed/NCBI
|
6
|
Driniaev VA, Mosin VA, Krugliak EB,
Sterlina TC, Novik TC, Ermakova NV, Kublik LN, Levitman MKh,
Shaposhnikova VV and Korystov IuN: Modification of antitumor effect
of vincristine by natural avermectins. Antibiot Khimioter. 49:3–5.
2004.(In Russian). PubMed/NCBI
|
7
|
Gupta PB, Onder TT, Jiang G, Tao K,
Kuperwasser C, Weinberg RA and Lander ES: Identification of
selective inhibitors of cancer stem cells by high-throughput
screening. Cell. 138:645–659. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Law V, Knox C, Djoumbou Y, Jewison T, Guo
AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, et al:
Drugbank 4.0: Shedding new light on drug metabolism. Nucl Acids
Res. 42(Database Issue): D1091–D1097. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Durant JL, Leland BA, Henry DR and Nourse
JG: Reoptimization of Mdl Keys for use in drug discovery. J Chem
Inf Comput Sci. 42:1273–1280. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Willett P, Barnard JM and Downs GM:
Chemical similarity searching. J Chem Inf Comput Sci. 38:983–996.
1998. View Article : Google Scholar
|
11
|
Molecular Operating Environment (MOE),
version 2010.10. Chemical Computing Group Inc.; Montreal, PQ,
Canada: http://www.chemcomp.com
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Medina-Franco JL and Maggiora GM:
Molecular similarity analysisChemoinformatics for Drug Discovery.
Bajorath J: John Wiley & Sons, Inc.; Hoboken, New Jersey: pp.
343–399. 2014
|
14
|
Maggiora GM: On outliers and activity
cliffs - why QSAR often disappoints. J Chem Inf Model. 46:15352006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Tanaka H, Nakamura M, Kameda C, Kubo M,
Sato N, Kuroki S, Tanaka M and Katano M: The Hedgehog signaling
pathway plays an essential role in maintaining the CD44+CD24-/low
subpopulation and the side population of breast cancer cells.
Anticancer Res. 29:2147–2157. 2009.PubMed/NCBI
|
16
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:pp.
3983–3988. 2003; View Article : Google Scholar : PubMed/NCBI
|
17
|
Sheridan C, Kishimoto H, Fuchs RK,
Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S and
Nakshatri H: CD44+/CD24- breast cancer cells exhibit enhanced
invasive properties: An early step necessary for metastasis. Breast
Cancer Res. 8:R592006. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Piscitelli E, Cocola C, Thaden FR,
Pelucchi P, Gray B, Bertalot G, Albertini A, Reinbold R and Zucchi
I: Culture and characterization of mammary cancer stem cells in
mammospheres. Methods Mol Biol. 1235:243–262. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang Y: Effects of salinomycin on cancer
stem cell in human lung adenocarcinoma A549 cells. Med Chem.
7:106–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang W, Sui Y, Ni J and Yang T: Insights
into the Nanog gene: A propeller for stemness in primitive stem
cells. Int J Biol Sci. 12:1372–1381. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Dragu DL, Necula LG, Bleotu C, Diaconu CC
and Chivu-Economescu M: Therapies targeting cancer stem cells:
Current trends and future challenges. World J Stem Cells.
7:1185–1201. 2015.PubMed/NCBI
|
22
|
Takebe N, Harris PJ, Warren RQ and Ivy PS:
Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog
pathways. Nat Rev Clin Oncol. 8:97–106. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Subedi A, Futamura Y, Nishi M, Ryo A,
Watanabe N and Osada H: High-throughput screening identifies
artesunate as selective inhibitor of cancer stemness: Involvement
of mitochondrial metabolism. Biochem Biophys Res Commun.
477:737–742. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
An H, Kim JY, Oh E, Lee N, Cho Y and Seo
JH: Salinomycin promotes anoikis and decreases the CD44+/CD24-
stem-like population via inhibition of STAT3 activation in
MDA-MB-231 cells. PLoS One. 10:e01419192015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Krotneva SP, Coffeng LE, Noma M, Zouré HG,
Bakoné L, Amazigo UV, de Vlas SJ and Stolk WA: African Program for
Onchocerciasis Control 1995–2010: Impact of annual ivermectin mass
treatment on off-target infectious diseases. PLoS Negl Trop Dis.
9:e00040512015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yoon YJ, Kim ES, Hwang YS and Choi CY:
Avermectin: biochemical and molecular basis of its biosynthesis and
regulation. Appl Microbiol Biotechnol. 63:626–634. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Barragry TB: A review of the pharmacology
and clinical uses of ivermectin. Can Vet J. 28:512–517.
1987.PubMed/NCBI
|
28
|
Sharmeen S, Skrtic M, Sukhai MA, Hurren R,
Gronda M, Wang X, Fonseca SB, Sun H, Wood TE, Ward R, et al: The
antiparasitic agent ivermectin induces chloride-dependent membrane
hyperpolarization and cell death in leukemia cells. Blood.
116:3593–3603. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu Y, Fang S, Sun Q and Liu B:
Anthelmintic drug ivermectin inhibits angiogenesis, growth and
survival of glioblastoma through inducing mitochondrial dysfunction
and oxidative stress. Biochem Biophys Res Comun. 480:415–421. 2016.
View Article : Google Scholar
|
30
|
Dou Q, Chen HN, Wang K, Yuan K, Lei Y, Li
K, Lan J, Chen Y, Huang Z, Xie N, et al: Ivermectin induces
cytostatic autophagy by blocking the PAK1/Akt axis in breast
cancer. Cancer Res. 76:4457–4469. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Draganov D, Gopalakrishna-Pillai S, Chen
YR, Zuckerman N, Moeller S, Wang C, Ann D and Lee PP: Modulation of
P2X4/P2×7/Pannexin-1 sensitivity to extracellular ATP via
ivermectin induces a non-apoptotic and inflammatory form of cancer
cell death. Sci Rep. 5:162222015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mosin VA, Krugliak EB, Sterlina TS,
Korystov IuN, Shaposhnikova VV, Narimanov AA, Kublik LN, Levitman
MKh, Viktorov AV and Driniaev VA: Cytotoxic and cytostatic effect
of avermectines on tumor cells in vitro. Antibiot Khimioter.
45:10–14. 2000.PubMed/NCBI
|
33
|
Melotti A, Mas C, Kuciak M, Lorente-Trigos
A, Borges I and Ruiz Altaba A: The river blindness drug ivermectin
and related macrocyclic lactones inhibit WNT-TCF pathway responses
in human cancer. EMBO Mol Med. 6:1263–1278. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kwon YJ, Petrie K, Leibovitch BA, Zeng L,
Mezei M, Howell L, Gil V, Christova R, Bansal N, Yang S, et al:
Selective inhibition of SIN3 corepressor with avermectins as a
novel therapeutic strategy in triple-negative breast cancer. Mol
Cancer Ther. 14:1824–1836. 2015. View Article : Google Scholar : PubMed/NCBI
|