1
|
Geetha S, Singh V, Ram MS, Ilavazhagan G,
Banerjee PK and Sawhney RC: Immunomodulatory effects of
seabuckthorn (Hippophae rhamnoides L.) against chromium (VI)
induced immunosuppression. Mol Cell Biochem. 278:101–109. 2005.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Aravindaram K and Yang NS:
Anti-inflammatory plant natural products for cancer therapy. Planta
Med. 76:1103–1117. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Winkler C, Wirleitner B, Schroecksnadel K,
Schennach H, Mur E and Fuchs D: In vitro effects of two extracts
and two pure alkaloid preparations of Uncaria tomentosa on
peripheral blood mononuclear cells. Planta Med. 70:205–210. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Patwardhan B and Gautam M: Botanical
immunodrugs: Scope and opportunities. Drug Discov Today.
10:495–502. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sreesha T: In-vitro study of cytotoxicity
activity of flavonoid fraction from the petals of Cassia senna. Int
J Ethnomed Pharmacol Res. 1:52–55. 2013.
|
6
|
Nagarathna PKM, Reena K, Sriram Reddy and
Johnson W: Review on immunomodulation and immunomodulatory activity
of some herbal plants. Int J Pharm Sci Rev Res. 22:223–230.
2013.
|
7
|
Ibrahim J, Waqas A and Syed Nasir AB:
Plant-derived immunomodulators: An insight on their preclinical
evaluation and clinical trials. Front Plant Sci.
6:6552015.PubMed/NCBI
|
8
|
Schepetkin IA and Quinn MT: Botanical
polysaccharides: Macrophage immunomodulation and therapeutic
potential. Int Immunopharmacol. 6:317–333. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Eiznhamer DA and Xu ZQ: Betulinic acid: A
promising anticancer candidate. IDrugs. 7:359–373. 2004.PubMed/NCBI
|
10
|
Higa M, Noha N, Yokaryo H, Ogihara K and
Yogi S: Three new naphthoquinone derivatives from Diospyros
maritima Blume. Chem Pharm Bull (Tokyo). 50:590–593. 2002.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Hanson JR: Pentacyclic triterpenes as
promising agents in cancer. Salvador JAR: Nova Science Publishers,
Inc; New York, NY: pp. 1912010
|
12
|
Santos RC, Salvador JA, Marín S, Cascante
M, Moreira JN and Dinis TC: Synthesis and structure-activity
relationship study of novel cytotoxic carbamate and
N-acylheterocyclic bearing derivatives of betulin and betulinic
acid. Bioorg Med Chem. 18:4385–4396. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang DM, Xu HG, Wang L, Li YJ, Sun PH, Wu
XM, Wang GJ, Chen WM and Ye WC: Betulinic acid and its derivatives
as potential antitumor agents. Med Res Rev. 35:1127–1155. 2015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Ali-Seyed M, Jantan I, Vijayaraghavan K
and Bukhari SN: Betulinic acid: Recent advances in chemical
modifications, effective delivery, and molecular mechanisms of a
promising anticancer therapy. Chem Biol Drug Des. 87:517–536. 2016.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Alakurtti S, Mäkelä T, Koskimies S and
Yli-Kauhaluoma J: Pharmacological properties of the ubiquitous
natural product betulin. Eur J Pharm Sci. 29:1–13. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Csuk R: Betulinic acid and its
derivatives: A patent review (2008–2013). Expert Opin Ther Pat.
24:913–923. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zuco V, Supino R, Righetti SC, Cleris L,
Marchesi E, Gambacorti-Passerini C and Formelli F: Selective
cytotoxicity of betulinic acid on tumor cell lines, but not on
normal cells. Cancer Lett. 175:17–25. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Thurnher D, Turhani D, Pelzmann M,
Wannemacher B, Knerer B, Formanek M, Wacheck V and Selzer E:
Betulinic acid: A new cytotoxic compound against malignant head and
neck cancer cells. Head Neck. 25:732–740. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mukherjee R, Kumar V, Srivastava SK,
Agarwal SK and Burman AC: Betulinic acid derivatives as anticancer
agents: Structure activity relationship. Anticancer Agents Med
Chem. 6:271–279. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Galgon T, Wohlrab W and Dräger B:
Betulinic acid induces apoptosis in skin cancer cells and
differentiation in normal human keratinocytes. Exp Dermatol.
14:736–743. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Selzer E, Pimentel E, Wacheck V, Schlegel
W, Pehamberger H, Jansen B and Kodym R: Effects of betulinic acid
alone and in combination with irradiation in human melanoma cells.
J Invest Dermatol. 114:935–940. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Periasamy G, Teketelew G, Gebrelibanos M,
Sintayehu B, Gebrehiwot M, Karim A and Geremedhin G: Betulinic acid
and its derivatives as anti-cancer agent: A review. Arch Appl Sci
Res. 6:47–58. 2014.
|
23
|
Mullauer FB, Kessler JH and Medema JP:
Betulinic acid, a natural compound with potent anticancer effects.
Anticancer Drugs. 21:215–227. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Heiss EH, Kramer MP, Atanasov AG, Beres H,
Schachner D and Dirsch VM: Glycolytic switch in response to
betulinic acid in non-cancer cells. PLoS One. 9:e1156832014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Moncada S, Palmer RM and Higgs A: Nitric
oxide: Physiology, pathophysiology and pharmacology. Pharmacol Rev.
43:109–142. 1991.PubMed/NCBI
|
26
|
Knowles RG and Moncada S: Nitric oxide
synthase in mammals. Biochemical J. 298:249–258. 1994. View Article : Google Scholar
|
27
|
Syed MA, Leong SK and Chan AS:
Localization of NADPH-diaphorase reactivity in the chick and mouse
thyroid gland. Thyroid. 4:475–478. 1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gulati P, Leong SK and Chan AS: Ontogeny
of NADPH-d expression in the thymic microenvironment of the chick
embryo. Cell Tissue Res. 294:335–343. 1998. View Article : Google Scholar : PubMed/NCBI
|
29
|
Akbari Z, Rohani MH and Behzadi G:
NADPH-d/NOS reactivity in the lumbar dorsal horn of congenitally
hypothyroid pups before and after formalin pain induction. Int J
Dev Neurosci. 27:779–787. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Förstermann U and Sessa WC: Nitric oxide
synthases: Regulation and function. Eur Heart J. 33:829–837,
837a-837d. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Andronowska A and Chruściel M: Expression
and cellular distribution of NADPH-diaphorase and nitric oxide
synthases in the porcine uterus during early pregnancy. Folia
Histochem Cytobiol. 45:375–380. 2007.PubMed/NCBI
|
32
|
Ali SM, Chan AS and Leong SK: Localization
of nitrergic neuronal and non-neuronal cells in the ultimobranchial
glands of the chicken. Anat Embryol (Berl). 193:161–168. 1996.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Dorko F, Špakovská T, Lovasová K, Patlevič
P and Kluchová D: NADPH-d activity in rat thymus after the
application of retinoid acid. Eur J Histochem. 56:e72012.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Hope BT, Michael GJ, Knigge KM and Vincent
SR: Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl
Acad Sci USA. 88:pp. 2811–2814. 1991; View Article : Google Scholar : PubMed/NCBI
|
35
|
Steiniger BS: Human spleen microanatomy:
Why mice do not suffice. Immunology. 145:334–346. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Danko J, Ondrasovic M, Svický E, Jenca A,
Pospieszny N and Ondrasovicová O: Histochemical study of
innervation and NADPH-D activity of the thymus. Anat Histol
Embryol. 32:233–235. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Svický E, Ondraovic M, Danko J,
Ondrasovicová O, Jenca A, Pospieszny N and Toropila M: Localisation
of NADPH-diaphorase-positive structures in the thymus of the rat,
mouse and rabbit. Folia Morphol (Warsz). 62:167–170.
2003.PubMed/NCBI
|
38
|
Jacobs AT and Ignarro LJ:
Lipopolysaccharide-induced expression of interferon-beta mediates
the timing of inducible nitric-oxide synthase induction in RAW
264.7 macrophages. J Biol Chem. 276:47950–47957. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yi JE, Obminska-Mrukowicz B, Yuan LY and
Yuan H: Immunomodulatory effects of betulinic acid from the bark of
white birch on mice. J Vet Sci. 11:305–313. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Jine Y, Lis M, Szczypka M and
Obmińska-Mrukowicz B: Influence of betulinic acid on lymphocyte
subsets and humoral immune response in mice. Pol J Vet Sci.
15:305–313. 2012.PubMed/NCBI
|
41
|
Hibbs JB Jr: Infection and nitric oxide. J
Infect Dis. 185 Suppl 1:S9–S17. 2002. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Ibiza S and Serrador JM: The role of
nitric oxide in the regulation of adaptive immune responses.
Immunología. 27:103–117. 2008.
|
43
|
Filep JG, Földes-Filep E, Rousseau A,
Sirois P and Fournier A: Vascular responses to endothelin-1
following inhibition of nitric oxide synthesis in the conscious
rat. Br J Pharmacol. 110:1213–1221. 1993. View Article : Google Scholar : PubMed/NCBI
|
44
|
Umeshappa CS, Singh KP, Nanjundappa RH,
Channappanavar R, Maan S and Maan NS: Bluetongue virus-23
stimulates inducible nitric oxide synthase expression and nitric
oxide production in mononuclear cells of blood and/or regional
lymphoid organs. Vet Res Commun. 36:245–250. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Darwiche SS, Pfeifer R, Menzel C, Ruan X,
Hoffman M, Cai C, Chanthaphavong RS, Loughran P, Pitt BR, Hoffman
R, et al: Inducible nitric oxide synthase contributes to immune
dysfunction following trauma. Shock. 38:499–507. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zdzisińska B, Rzeski W, Paduch R,
Szuster-Ciesielska A, Kaczor J, Wejksza K and Kandefer-Szerszeń M:
Differential effect of betulin and betulinic acid on cytokine
production in human whole blood cell cultures. Pol J Pharmacol.
55:235–238. 2003.PubMed/NCBI
|
47
|
Chen S, Bai Y, Li Z, Jia K, Jin Y, He B,
Qiu WW, Du C, Siwko S, Chen H, et al: A betulinic acid derivative
SH479 inhibits collagen-induced arthritis by modulating T cell
differentiation and cytokine balance. Biochem Pharmacol. 126:69–78.
2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sultana N and Saify ZS: Naturally
occurring and synthetic agents as potential anti-inflammatory and
immunomodulants. Antiinflamm Antiallergy Agents Med Chem. 11:3–19.
2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang P, Li Q, Li K, Zhang X, Han Z, Wang
J, Gao D and Li J: Betulinic acid exerts immunoregulation and
anti-tumor effect on cervical carcinoma (U14) tumor-bearing mice.
Pharmazie. 67:733–739. 2012.PubMed/NCBI
|
50
|
Dash SK, Chattopadhyay S, Tripathy S, Dash
SS, Das B, Mandal D, Mahapatra SK, Bag BG and Roy S: Self-assembled
betulinic acid augments immunomodulatory activity associates with
IgG response. Biomed Pharmacother. 75:205–217. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yi J, Zhu R, Wu J, Wu J, Xia W, Zhu L,
Jiang W, Xiang S and Tan Z: In vivo protective effect of betulinic
acid on dexamethasone induced thymocyte apoptosis by reducing
oxidative stress. Pharmacol Rep. 68:95–100. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kovalenko LP, Balakshin VV, Presnova GA,
Chistyakov AN, Shipaeva EV, Alekseeva SV and Durnev AD:
Immunotoxicity and allergenic properties of betulin-containing
birch bark dry extract. Pharm Chem J. 41:17–19. 2007. View Article : Google Scholar
|
53
|
Naithani R, Huma LC, Moriarty RM,
McCormick DL and Mehta RG: Comprehensive review of cancer
chemopreventive agents evaluated in experimental carcinogenesis
models and clinical trials. Curr Med Chem. 15:1044–1071. 2008.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Paszkiewicz M, Budzyńska A, Różalska B and
Sadowska B: The immunomodulatory role of plant polyphenols. Postepy
Hig Med Dosw (Online). 66:637–636. 2012.(In Polish). View Article : Google Scholar : PubMed/NCBI
|
55
|
Mathew NS and Negi PS: Traditional uses,
phytochemistry and pharmacology of wild Banana (Musa acuminata
Colla): A review. J Ethnopharmacol. 196:124–140. 2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Schmidt A, Bilgasem S, Lorkowski S,
Vischer P, Völker W, Breithardt G, Siegel G and Buddecke E:
Exogenous nitric oxide regulates activity and synthesis of vascular
endothelial nitric oxide synthase. Eur J Clin Invest. 38:476–485.
2008. View Article : Google Scholar : PubMed/NCBI
|
57
|
Son Y, Lee JH, Cheong YK, Jung HC, Jeong
SO, Park SH and Pae HO: Piceatannol, a natural hydroxylated analog
of resveratrol, promotes nitric oxide release through
phosphorylation of endothelial nitric oxide synthase in human
endothelial cells. Eur Rev Med Pharmacol Sci. 19:3125–3132.
2015.PubMed/NCBI
|
58
|
Tillery LC, Epperson TA, Eguchi S and
Motley ED: Differential regulation of endothelial nitric oxide
synthase phosphorylation by protease-activated receptors in adult
human endothelial cells. Exp Biol Med (Maywood). 241:569–580. 2016.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Steinkamp-Fenske K, Bollinger L, Xu H, Yao
Y, Horke S, Förstermann U and Li H: Reciprocal regulation of
endothelial nitric-oxide synthase and NADPH oxidase by betulinic
acid in human endothelial cells. J Pharmacol Exp Ther. 322:836–842.
2007. View Article : Google Scholar : PubMed/NCBI
|
60
|
Qian LB, Fu JY, Cai X and Xia ML:
Betulinic acid inhibits superoxide anion-mediated impairment of
endothelium-dependent relaxation in rat aortas. Ind J Pharmacol.
44:588–592. 2012. View Article : Google Scholar
|
61
|
Hohmann N, Xia N, Steinkamp-Fenske K,
Förstermann U and Li H: Estrogen receptor signaling and the
PI3K/Akt pathway are involved in betulinic acid-induced eNOS
activation. Molecules. 21:E9732016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Jin SW, Choi CY, Hwang YP, Kim HG, Kim SJ,
Chung YC, Lee KJ, Jeong TC and Jeong HG: Betulinic acid increases
eNOS phosphorylation and no synthesis via the calcium-signaling
pathway. J Agric Food Chem. 64:785–791. 2016. View Article : Google Scholar : PubMed/NCBI
|
63
|
Chen MF, Huang YC, Long C, Yang HI, Lee
HC, Chen PY, Hoffer BJ and Lee TJ: Bimodal effects of fluoxetine on
cerebral nitrergic neurogenic vasodilation in porcine large
cerebral arteries. Neuropharmacology. 62:1651–1658. 2012.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Lies B, Beck K, Keppler J, Saur D,
Groneberg D and Friebe A: Nitrergic signalling via interstitial
cells of Cajal regulates motor activity in murine colon. J Physiol.
593:4589–4601. 2015. View Article : Google Scholar : PubMed/NCBI
|
65
|
Wenisch S and Arnhold S: NADPH-diaphorase
activity and NO synthase expression in the olfactory epithelium of
the bovine. Anat Histol Embryol. 39:201–206. 2010. View Article : Google Scholar : PubMed/NCBI
|
66
|
Şelaru M, Rusu MC and Jianu AM: Expression
of nNOS in the human larynx. Anat Sci Int. 90:327–330. 2015.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Knipping S, Holzhausen HJ, Berghaus A,
Bloching M and Riederer A: Ultrastructural detection of nitric
oxide in human nasal mucosa. Otolaryngol Head Neck Surg.
132:620–625. 2005. View Article : Google Scholar : PubMed/NCBI
|
68
|
Koyama T, Hatanaka Y, Jin X, Yokomizo A,
Fujiwara H, Goda M, Hobara N, Zamami Y, Kitamura Y and Kawasaki H:
Altered function of nitrergic nerves inhibiting sympathetic
neurotransmission in mesenteric vascular beds of renovascular
hypertensive rats. Hypertens Res. 33:485–491. 2010. View Article : Google Scholar : PubMed/NCBI
|
69
|
Shimada S, Todoki K, Omori Y, Toyama T,
Matsuo M, Wada-Takahashi S, Takahashi SS and Lee MC: Contribution
of nitrergic nerve in canine gingival reactive hyperemia. J Clin
Biochem Nutr. 56:98–104. 2015. View Article : Google Scholar : PubMed/NCBI
|
70
|
Mignini F, Sabbatini M, D'Andrea V and
Cavallotti C: Intrinsic innervation and dopaminergic markers after
experimental denervation in rat thymus. Eur J Histochem.
54:e172010. View Article : Google Scholar : PubMed/NCBI
|
71
|
Dorko F, Danko J, Flešárová S, Boroš E and
Sobeková A: Effect of pesticide bendiocar-bamate on distribution of
acetylcholine- and butyrylcholine-positive nerves in rabbit's
thymus. Eur J Histochem. 55:e372011. View Article : Google Scholar : PubMed/NCBI
|
72
|
Liu C, Yang Y, Hu X, Li JM, Zhang XM, Cai
Y, Li Z and Yan XX: Ontogenesis of NADPH-diaphorase positive
neurons in guinea pig neocortex. Front Neuroanat. 9:112015.
View Article : Google Scholar : PubMed/NCBI
|
73
|
Jung J, Na C and Huh Y: Alterations in
nitric oxide synthase in the aged CNS. Oxid Med Cell Longev.
2012:7189762012. View Article : Google Scholar : PubMed/NCBI
|
74
|
Cossenza M, Socodato R, Portugal CC,
Domith IC, Gladulich LF, Encarnação TG, Calaza KC, Mendonça HR,
Campello-Costa P and Paes-de-Carvalho R: Nitric oxide in the
nervous system: Biochemical, developmental, and neurobiological
aspects. Vitam Horm. 96:79–125. 2014. View Article : Google Scholar : PubMed/NCBI
|
75
|
Downing JE: Multiple nitric oxide synthase
systems in adult rat thymus revealed using NADPH diaphorase
histochemistry. Immunology. 82:659–664. 1994.PubMed/NCBI
|
76
|
Villanueva C and Giulivi C: Subcellular
and cellular locations of nitric-oxide synthase isoforms as
determinants of health and disease. Free Radic Biol Med.
49:307–316. 2010. View Article : Google Scholar : PubMed/NCBI
|
77
|
Bogdan C: Nitric oxide synthase in innate
and adaptive immunity: An update. Trends Immunol. 36:161–178. 2015.
View Article : Google Scholar : PubMed/NCBI
|