1
|
Hervás-García A, Martínez-Lozano MA,
Cabanes-Vila J, Barjau-Escribano A and Fos-Galve P: Composite
resins. A review of the materials and clinical indications. Med
Oral Pathol Oral Cir Bucal. 11:E215–E220. 2006.(In English,
Spanish).
|
2
|
Labella R, Lambrechts P, Van Meerbeek B
and Vanherle G: Polymerization shrinkage and elasticity of flowable
composites and filled adhesives. Dent Mater. 15:128–137. 1999.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Faltermeier A, Rosentritt M, Reicheneder C
and Müssig D: Experimental composite brackets: Influence of filler
level on the mechanical properties. Am J Orthod Dentofacial Orthop.
130:699. e9–e14. 2006. View Article : Google Scholar
|
4
|
Ikemura K, Tay FR, Endo T and Pashley DH:
A review of chemical-approach and ultramorphological studies on the
development of fluoride-releasing dental adhesives comprising new
pre-reacted glass ionomer (PRG) fillers. Dent Mater J. 27:315–339.
2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ito S, IIjima M, Hashimoto M, Tsukamoto N,
Mizoguchi I and Saito T: Effects of surface pre-reacted
glass-ionomerfillers on mineral induction by phosphoprotein. J
Dent. 39:72–79. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Iijima Y and Koulourides T: Fluoride
incorporation into and retention in remineralized enamel. J Dent
Res. 68:1289–1292. 1989. View Article : Google Scholar : PubMed/NCBI
|
7
|
Siiya T, Tomiyama K, Iizuka J, Hasegawa H,
Kuramochi E, Fujino F, Ohashi K, Nihei T, Teranaka T and Mukai Y:
Effect of the coating material on root dentin remineralization in
vitro. Am J Dent. 27:258–262. 2014.PubMed/NCBI
|
8
|
Movahedi Najafabadi BA and Abnosi MH:
Boron induces early matrix mineralization via calcium deposition
and elevation of alkaline phosphatase activity in differentiated
rat bone marrow mesenchymal stem cells. Cell J. 18:62–73.
2016.PubMed/NCBI
|
9
|
Taşlı PN, Doğan A, Demirci S and Şahin F:
Boron enhances odontogenic and osteogenic differentiation of human
tooth germ stem cells (hTGSC) in vitro. Biol Trace Elem Res.
153:419–427. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Doğan A, Demirci S, Bayir Y, Halici Z,
Karakus E, Aydin A, Cadirci E, Albayrak A, Dermici E, Karaman A, et
al: Boron containing poly-(lactide-co-glycolide-acid) (PLGA)
scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol
Appl. 44:246–253. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Reffitt DM, Ogston N, Jugdaohsingh R,
Cheung HF, Evans BA, Thompson RP, Powell JJ and Hampson GN:
Orthosilicic acid stimulates collagen type I synthesis and
osteoblastic differentiation in human osteoblast-like cells in
vitro. Bone. 32:127–135. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Müller WE, Tolba E, Schröder HC,
Diehl-Seifert B, Link T and Wang X: Biosilica-loaded poly
(ε-caprolactone) nanofibers mats provide a morphogenetically active
surface scaffold for the growth and mineralization of the
osteoclast-related SaOS-2 cells. Biotechnol J. 9:1312–1321. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang S, Wang X, Draenert FG, Albert O,
Schröder HC, Mailänder V, Mitov G and Müller WE: Bioactive and
biodegradable silica biomaterial for bone regeneration. Bone.
67:292–304. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ni GX, Yao ZP, Huang GT, Liu WG and Lu WW:
The effect of strontium incorporation in hydroxyapatite on
osteoblasts in vitro. J Mater Sci Mater Med. 22:961–967. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Su WT, Chou WL and Chou CM: Osteoblastic
differentiation of stem cells from human exfoliated deciduous teeth
induced by thermosensitive hydrogels with strontium phosphate.
Mater Sci Eng C Mater Biol Appl. 52:46–53. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang W, Wang G, Liu Y, Zhao X, Zou D, Zhu
C, Jin Y, Huang Q, Sun J, Liu X, et al: The synergistic effect of
hierarchical micro/nano-topography and bioactive ions for enhanced
osseointegration. Biomaterials. 34:3184–3195. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cao Z, Fu Y, Sun X, Zhang Q, Xu F and Li
Y: Aluminum trichloride inhibits osteoblastic differentiation
through inactivation of Wnt/β-catenin signaling pathway in rat
osteoblasts. Environ Toxicol Pharmacol. 42:198–204. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun X, Cao Z, Zhang Q, Li M, Han L and Li
Y: Aluminum trichloride inhibits osteoblast mineralization via
TGF-β1/Smad signaling pathway. Chem Biol Interact. 244:9–15. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Cao Z, Liu D, Zhang Q, Sun X and Li Y:
Aluminum chloride induces osteoblasts apoptosis via disrupting
calcium homeostasis and activating Ca(2+)/CaMKII signal pathway.
Biol Trace Elem Res. 169:247–253. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li X, Hu C, Zhu Y, Sun H, Li Y and Zhang
Z: Effects of aluminum exposure on bone mineral density, mineral
and trace elements in rats. Biol Trace Elem Res. 143:378–385. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Mori T, Kiyono T, Imabayashi H, Takeda Y,
Tsuchiya K, Miyoshi S, Makino H, Matsumoto K, Saito H, Ogawa S, et
al: Combination of hTERT and bmi-1, E6 and E7 induces prolongation
of the life span of bone marrow stromal cells from an elderly donor
without affecting their neurogenic potential. Mol Cell Biol.
25:5183–5195. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shimomura T, Yoshida Y, Sakabe T, Ishii K,
Gonda K, Murai R, Takubo K, Tsuchiya H, Hoshikawa Y, Kurimasa A, et
al: Hepatic differentiation of human bone marrow-derived UE7T-13
cells: Effects of cytokines and CCN family gene expression. Hepatol
Res. 37:1068–1079. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hakki SS, Bozcurt BS and Hakki EE: Boron
regulates mineralized tissue-associated proteinsin osteoblasts
(MC3T3-E1). J Trace Elem Med Biol. 24:243–250. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zou S, Ireland D, Brooks RA, Rushton N and
Best S: The effects of silicate ions on human osteoblast adhesion,
proliferation and differentiation. J Biomed Mater Res B Appl
Biomater. 90:123–130. 2009.PubMed/NCBI
|
25
|
Varanasi VG, Leong KK, Dominia LM, Jue SM,
Loomer PM and Marshall GW: Si and Ca individually and
combinatorially target enhanced MC3T3-E1 subclone 4 early
osteogenic marker expression. J Oral Implantol. 38:325–336. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Bao X, Liu X, Zhang Y, Cui Y, Yao J and Hu
M: Strontium promotes cementoblasts differentiation through
inhibiting sclerostin expression in vitro. Biomed Res Int.
2014:4875352014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nakade O, Koyama H, Arai J, Ariji H,
Takada J and Kaku T: Stimulation by low concentrations of fluoride
of the proliferation and alkaline phosphatase activity of human
dental pulp cells in vivo. Arch Oral Biol. 44:89–92. 1999.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhu Y, Xu F, Yan X, Miao L, Li H, Hu C,
Wang Z, Lian S, Feng Z and Li Y: The suppressive effects of
aluminium chloride on the osteoblasts function. Environ Toxicol
Pharmacol. 48:125–129. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ji YM, Jeon SH, Park JY, Chung JH, Choung
YH and Choung PH: Dental stem cell therapy with calcium hydroxide
in dental pulp capping. Tissue Eng Part A. 16:1823–1833. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Hu L, Liu Y and Wang S: Stem cell-based
tooth and periodontal regeneration. Oral Dis. 2017. View Article : Google Scholar :
|