1
|
Mina M and Kollar EJ: The induction of
odontogenesis in non-dental mesenchyme combined with early murine
mandibular arch epithelium. Arch Oral Biol. 32:123–127. 1987.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Sarkar J, Simanian EJ, Tuggy SY, Bartlett
JD, Snead ML, Sugiyama T and Paine ML: Comparison of two mouse
ameloblast-like cell lines for enamel-specific gene expression.
Front Physiol. 5:2772014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Guo F, Feng J, Wang F, Li W, Gao Q, Chen
Z, Shoff L, Donly KJ, Gluhak-Heinrich J, Chun YH, et al: Bmp2
deletion causes an amelogenesis imperfecta phenotype via regulating
enamel gene expression. J Cell Physiol. 230:1871–1882. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Price JA, Wright JT, Walker SJ, Crawford
PJ, Aldred MJ and Hart TC: Tricho-dento-osseous syndrome and
amelogenesis imperfecta with taurodontism are genetically distinct
conditions. Clin Genet. 56:35–40. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhou YL, Lei Y and Snead ML: Functional
antagonism between Msx2 and CCAAT/enhancer-binding protein alpha in
regulating the mouse amelogenin gene expression is mediated by
protein-protein interaction. J Biol Chem. 275:29066–29075. 2000.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu F, Chu EY, Watt B, Zhang Y, Gallant
NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, et al:
Wnt/beta-catenin signaling directs multiple stages of tooth
morphogenesis. Dev Biol. 313:210–224. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mitsiadis TA, Graf D, Luder H, Gridley T
and Bluteau G: BMPs and FGFs target Notch signalling via jagged 2
to regulate tooth morphogenesis and cytodifferentiation.
Development. 137:3025–3035. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Riksen EA, Kalvik A, Brookes S, Hynne A,
Snead ML, Lyngstadaas SP and Reseland JE: Fluoride reduces the
expression of enamel proteins and cytokines in an
ameloblast-derived cell line. Arch Oral Biol. 56:324–330. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Artavanis-Tsakonas S, Rand MD and Lake RJ:
Notch signaling: Cell fate control and signal integration in
development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mitsiadis TA, Regaudiat L and Gridley T:
Role of the Notch signalling pathway in tooth morphogenesis. Arch
Oral Biol. 50:137–140. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Felszeghy S, Suomalainen M and Thesleff I:
Notch signalling is required for the survival of epithelial stem
cells in the continuously growing mouse incisor. Differentiation.
80:241–248. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Traustadóttir GÁ, Jensen CH, Thomassen M,
Beck HC, Mortensen SB, Laborda J, Baladrón V, Sheikh SP and
Andersen DC: Evidence of non-canonical NOTCH signaling: Delta-like
1 homolog (DLK1) directly interacts with the NOTCH1 receptor in
mammals. Cell Signal. 28:246–254. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Falix FA, Aronson DC, Lamers WH and
Gaemers IC: Possible roles of DLK1 in the Notch pathway during
development and disease. Biochim Biophys Acta. 1822:988–995. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Floridon C, Jensen CH, Thorsen P, Nielsen
O, Sunde L, Westergaard JG, Thomsen SG and Teisner B: Does fetal
antigen 1 (FA1) identify cells with regenerative, endocrine and
neuroendocrine potentials? A study of FA1 in embryonic, fetal, and
placental tissue and in maternal circulation. Differentiation.
66:49–59. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tanimizu N, Nishikawa M, Saito H,
Tsujimura T and Miyajima A: Isolation of hepatoblasts based on the
expression of Dlk/Pref-1. J Cell Sci. 116:1775–1786. 2003.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Moore KA, Pytowski B, Witte L, Hicklin D
and Lemischka IR: Hematopoietic activity of a stromal cell
transmembrane protein containing epidermal growth factor-like
repeat motifs. Proc Natl Acad Sci USA. 94:pp. 4011–4016. 1997;
View Article : Google Scholar : PubMed/NCBI
|
17
|
Abdallah BM, Jensen CH, Gutierrez G,
Leslie RG, Jensen TG and Kassem M: Regulation of human skeletal
stem cells differentiation by Dlk1/Pref-1. J Bone Miner Res.
19:841–852. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Andersen DC, Petersson SJ, Jørgensen LH,
Bollen P, Jensen PB, Teisner B, Schroeder HD and Jensen CH:
Characterization of DLK1+ cells emerging during skeletal muscle
remodeling in response to myositis, myopathies, and acute injury.
Stem Cells. 27:898–908. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen L, Qanie D, Jafari A, Taipaleenmaki
H, Jensen CH, Säämänen AM, Sanz ML, Laborda J, Abdallah BM and
Kassem M: Delta-like 1/fetal antigen-1 (Dlk1/FA1) is a novel
regulator of chondrogenic cell differentiation via inhibition of
the Akt kinase-dependent pathway. J Biol Chem. 286:32140–32149.
2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li H, Marijanovic I, Kronenberg MS, Erceg
I, Stover ML, Velonis D, Mina M, Heinrich JG, Harris SE, Upholt WB,
et al: Expression and function of Dlx genes in the osteoblast
lineage. Dev Biol. 316:458–470. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hassan MQ, Saini S, Gordon JA, van Wijnen
AJ, Montecino M, Stein JL, Stein GS and Lian JB: Molecular switches
involving homeodomain proteins, HOXA10 and RUNX2 regulate
osteoblastogenesis. Cells Tissues Organs. 189:122–125. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma D, Zhang R, Sun Y, Rios HF, Haruyama N,
Han X, Kulkarni AB, Qin C and Feng JQ: A novel role of periostin in
postnatal tooth formation and mineralization. J Biol Chem.
286:4302–4309. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Qi S, Yan Y, Wen Y, Li J, Wang J, Chen F,
Tang X, Shang G, Xu Y and Wang R: The effect of delta-like 1
homolog on the proliferation and odontoblastic differentiation in
human dental pulp stem cells. Cell Prolif. 50:2017. View Article : Google Scholar
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Cheung LY, Rizzoti K, Lovell-Badge R and
Le Tissier PR: Pituitary phenotypes of mice lacking the notch
signalling ligand delta-like 1 homolog. J Neuroendocrinol.
25:391–401. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mortensen SB, Jensen CH, Schneider M,
Thomassen M, Kruse TA, Laborda J, Sheikh SP and Andersen DC:
Membrane-tethered delta-like 1 homolog (DLK1) restricts adipose
tissue size by inhibiting preadipocyte proliferation. Diabetes.
61:2814–2822. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Weng T, Gao L, Bhaskaran M, Guo Y, Gou D,
Narayanaperumal J, Chintagari NR, Zhang K and Liu L: Pleiotrophin
regulates lung epithelial cell proliferation and differentiation
during fetal lung development via beta-catenin and Dlk1. J Biol
Chem. 284:28021–28032. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Surmacz B, Noisa P, Risner-Janiczek JR,
Hui K, Ungless M, Cui W and Li M: DLK1 promotes neurogenesis of
human and mouse pluripotent stem cell-derived neural progenitors
via modulating Notch and BMP signalling. Stem Cell Rev. 8:459–471.
2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mustonen T, Tümmers M, Mikami T, Itoh N,
Zhang N, Gridley T and Thesleff I: Lunatic fringe, FGF, and BMP
regulate the Notch pathway during epithelial morphogenesis of
teeth. Dev Biol. 248:281–293. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cai X, Gong P, Huang Y and Lin Y: Notch
signalling pathway in tooth development and adult dental cells.
Cell Prolif. 44:495–507. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Han Z, Yu C, Tian Y, Zeng T, Cui W, Mager
J and Wu Q: Expression patterns of long noncoding RNAs from
Dlk1-Dio3 imprinted region and the potential mechanisms of Gtl2
activation during blastocyst development. Biochem Biophys Res
Commun. 463:167–173. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kim KA, Kim JH, Wang Y and Sul HS: Pref-1
(preadipocyte factor 1) activates the MEK/extracellular
signal-regulated kinase pathway to inhibit adipocyte
differentiation. Mol Cell Biol. 27:2294–2308. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kim SW, Muise AM, Lyons PJ and Ro HS:
Regulation of adipogenesis by a transcriptional repressor that
modulates MAPK activation. J Biol Chem. 276:10199–10206. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Greenblatt MB, Kim JM, Oh H, Park KH, Choo
MK, Sano Y, Tye CE, Skobe Z, Davis RJ, Park JM, et al: p38α MAPK is
required for tooth morphogenesis and enamel secretion. J Biol Chem.
290:284–295. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sakoda K, Nakajima Y and Noguchi K: Enamel
matrix derivative induces production of vascular endothelial cell
growth factor in human gingival fibroblasts. Eur J Oral Sci.
120:513–519. 2012. View Article : Google Scholar : PubMed/NCBI
|