1
|
Zilişteanu DS, Atasie T and Voiculescu M:
Efficacy of long-term low-dose sulodexide in diabetic and
non-diabetic nephropathies. Rom J Intern Med. 53:161–169.
2015.PubMed/NCBI
|
2
|
Shima A, Miyamoto M, Kubota Y, Takagi G
and Shimizu W: Beraprost sodium protects against diabetic
nephropathy in patients with arteriosclerosis obliterans: A
prospective, randomized, open-label study. J Nippon Med Sch.
82:84–91. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Van Buren PN, Adams-Huet B, Nguyen M,
Molina C and Toto RD: Potassium handling with dual
renin-angiotensin system inhibition in diabetic nephropathy. Clin J
Am Soc Nephrol. 9:295–301. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Peng R, Liu H, Peng H, Zhou J, Zha H, Chen
X, Zhang L, Sun Y, Yin P, Wen L, et al: Promoter hypermethylation
of let-7a-3 is relevant to its down-expression in diabetic
nephropathy by targeting UHRF1. Gene. 570:57–63. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kato M, Castro NE and Natarajan R:
MicroRNAs: Potential mediators and biomarkers of diabetic
complications. Free Radic Biol Med. 64:85–94. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Conserva F, Pontrelli P, Accetturo M and
Gesualdo L: The pathogenesis of diabetic nephropathy: Focus on
microRNAs and proteomics. J Nephrol. 26:811–820. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Alvarez ML and DiStefano JK: Towards
microRNA-based therapeutics for diabetic nephropathy. Diabetologia.
56:444–456. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Silambarasan M, Tan JR, Karolina DS,
Armugam A, Kaur C and Jeyaseelan K: MicroRNAs in hyperglycemia
induced endothelial cell dysfunction. Int J Mol Sci. 17:5182016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ahmad A, Mondello S, Di Paola R, Mazzon E,
Esposito E, Catania MA, Italiano D, Mondello P, Aloisi C and
Cuzzocrea S: Protective effect of apocynin, a NADPH-oxidase
inhibitor, against contrast-induced nephropathy in the diabetic
rats: A comparison with n-acetylcysteine. Eur J Pharmacol.
674:397–406. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jeong SI, Kim SJ, Kwon TH, Yu KY and Kim
SY: Schizandrin prevents damage of murine mesangial cells via
blocking NADPH oxidase-induced ROS signaling in high glucose. Food
Chem Toxicol. 50:1045–1053. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Winiarska K, Dzik JM, Labudda M, Focht D,
Sierakowski B, Owczarek A, Komorowski L and Bielecki W: Melatonin
nephroprotective action in Zucker diabetic fatty rats involves its
inhibitory effect on NADPH oxidase. J Pineal Res. 60:109–117. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Jangale NM, Devarshi PP, Bansode SB,
Kulkarni MJ and Harsulkar AM: Dietary flaxseed oil and fish oil
ameliorates renal oxidative stress, protein glycation, and
inflammation in streptozotocin-nicotinamide-induced diabetic rats.
J Physiol Biochem. 72:327–336. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Borsting E, Patel SV, Decleves AE,
Declèves AE, Lee SJ, Rahman QM, Akira S, Satriano J, Sharma K,
Vallon V and Cunard R: Tribbles homolog 3 attenuates mammalian
target of rapamycin complex-2 signaling and inflammation in the
diabetic kidney. J Am Soc Nephrol. 25:2067–2078. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Deliyanti D, Zhang Y, Khong F, Berka DR,
Stapleton DI, Kelly DJ and Wilkinson-Berka JL: FT011, a novel
cardiorenal protective drug, reduces inflammation, gliosis and
vascular injury in rats with diabetic retinopathy. PLoS One.
10:e01343922015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Donate-Correa J, Martín-Núñez E,
Muros-de-Fuentes M, Mora-Fernández C and Navarro-González JF:
Inflammatory cytokines in diabetic nephropathy. J Diabetes Res.
2015:9484172015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang TF, Lei Z, Li YX, Wang YS, Wang J,
Wang SJ, Hao YJ, Zhou R, Jin SJ, Du J, et al: Oxysophoridine
protects against focal cerebral ischemic injury by inhibiting
oxidative stress and apoptosis in mice. Neurochem Res.
38:2408–2417. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Muluye RA, Bian Y, Wang L, Alemu PN, Cui
H, Peng X and Li S: Placenta peptide can protect mitochondrial
dysfunction through inhibiting ROS and TNF-α generation, by
maintaining mitochondrial dynamic network and by increasing il-6
level during chronic fatigue. Front Pharmacol. 7:3282016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Schneider MP, Schneider A, Jumar A,
Kistner I, Ott C and Schmieder RE: Effects of folic acid on renal
endothelial function in patients with diabetic nephropathy: Results
from a randomized trial. Clin Sci (Lond). 127:499–505. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Moon JY, Tanimoto M, Gohda T, Hagiwara S,
Yamazaki T, Ohara I, Murakoshi M, Aoki T, Ishikawa Y, Lee SH, et
al: Attenuating effect of angiotensin-(1–7) on angiotensin
II-mediated NAD(P)H oxidase activation in type 2 diabetic
nephropathy of KK-A(y)/Ta mice. Am J Physiol Renal Physiol.
300:F1271–F1282. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang JC, Zhao Y, Chen SJ, Long J, Jia QQ,
Zhai JD, Zhang Q, Chen Y and Long HB: AOPPs induce MCP-1 expression
by increasing ROS-mediated activation of the NF-κB pathway in rat
mesangial cells: Inhibition by sesquiterpene lactones. Cell Physiol
Biochem. 32:1867–1877. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pessôa BS, Peixoto EB, Papadimitriou A,
Lopes de Faria JM and Lopes de Faria JB: Spironolactone improves
nephropathy by enhancing glucose-6-phosphate dehydrogenase activity
and reducing oxidative stress in diabetic hypertensive rat. J Renin
Angiotensin Aldosterone Syst. 13:56–66. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Thallas-Bonke V, Thorpe SR, Coughlan MT,
Fukami K, Yap FY, Sourris KC, Penfold SA, Bach LA, Cooper ME and
Forbes JM: Inhibition of NADPH oxidase prevents advanced glycation
end product-mediated damage in diabetic nephropathy through a
protein kinase C-alpha-dependent pathway. Diabetes. 57:460–469.
2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
He T, Guan X, Wang S, Xiao T, Yang K, Xu
X, Wang J and Zhao J: Resveratrol prevents high glucose-induced
epithelial-mesenchymal transition in renal tubular epithelial cells
by inhibiting NADPH oxidase/ROS/ERK pathway. Mol Cell Endocrinol.
402:13–20. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Towler DA: Mitochondrial ROS deficiency
and diabetic complications: AMP [K]-lifying the adaptation to
hyperglycemia. J Clin Invest. 123:4573–4576. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang L, Pang S, Deng B, Qian L, Chen J,
Zou J, Zheng J, Yang L, Zhang C, Chen X, et al: High glucose
induces renal mesangial cell proliferation and fibronectin
expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which is
inhibited by resveratrol. Int J Biochem Cell Biol. 44:629–638.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jha JC, Gray SP, Barit D, Okabe J, El-Osta
A, Namikoshi T, Thallas-Bonke V, Wingler K, Szyndralewiez C, Heitz
F, et al: Genetic targeting or pharmacologic inhibition of NADPH
oxidase nox4 provides renoprotection in long-term diabetic
nephropathy. J Am Soc Nephrol. 25:1237–1254. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu JJ, Yeoh LY, Sum CF, Tavintharan S, Ng
XW, Liu S, Lee SB, Tang WE and Lim SC: SMART2D study: Vascular cell
adhesion molecule-1, but not intercellular adhesion molecule-1, is
associated with diabetic kidney disease in Asians with type 2
diabetes. J Diabetes Complications. 29:707–712. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Matsui T, Nishino Y, Maeda S, Takeuchi M
and Yamagishi S: Irbesartan inhibits advanced glycation end product
(AGE)-induced up-regulation of vascular cell adhesion molecule-1
(VCAM-1) mRNA levels in glomerular endothelial cells. Microvasc
Res. 81:269–273. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Alkhalaf A, Kleefstra N, Groenier KH, Bilo
HJ, Gans RO, Heeringa P, Scheijen JL, Schalkwijk CG, Navis GJ and
Bakker SJ: Effect of benfotiamine on advanced glycation endproducts
and markers of endothelial dysfunction and inflammation in diabetic
nephropathy. PLoS One. 7:e404272012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jheng HF, Tsai PJ, Chuang YL, Shen YT, Tai
TA, Chen WC, Chou CK, Ho LC, Tang MJ, Lai KT, et al: Albumin
stimulates renal tubular inflammation through an HSP70-TLR4 axis in
mice with early diabetic nephropathy. Dis Model Mech. 8:1311–1321.
2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yaghobian D, Don AS, Yaghobian S, Chen X,
Pollock CA and Saad S: Increased sphingosine 1-phosphate mediates
inflammation and fibrosis in tubular injury in diabetic
nephropathy. Clin Exp Pharmacol Physiol. 43:56–66. 2016. View Article : Google Scholar : PubMed/NCBI
|