1
|
Fransen M, Bridgett L, March L, Hoy D,
Penserga E and Brooks P: The epidemiology of osteoarthritis in
Asia. Int J Rheum Dis. 14:113–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
van der Kraan PM and van den Berg WB:
Chondrocyte hypertrophy and osteoarthritis: Role in initiation and
progression of cartilage degeneration? Osteoarthritis Cartilage.
20:223–232. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang Y and Jordan JM: Epidemiology of
osteoarthritis. Clin Geriatr Med. 26:355–369. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Neogi T and Zhang Y: Epidemiology of
osteoarthritis. Rheum Dis Clin North Am. 39:1–19. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cross M, Smith E, Hoy D, Nolte S, Ackerman
I, Fransen M, Bridgett L, Williams S, Guillemin F, Hill CL, et al:
The global burden of hip and knee osteoarthritis: Estimates from
the global burden of disease 2010 study. Ann Rheum Dis.
73:1323–1330. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Akkiraju H and Nohe A: Role of
chondrocytes in cartilage formation, progression of osteoarthritis
and cartilage regeneration. J Dev Biol. 3:177–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dreier R: Hypertrophic differentiation of
chondrocytes in osteoarthritis: The developmental aspect of
degenerative joint disorders. Arthritis Res Ther. 12:2162010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Mobasheri A, Kalamegam G, Musumeci G and
Batt ME: Chondrocyte and mesenchymal stem cell-based therapies for
cartilage repair in osteoarthritis and related orthopaedic
conditions. Maturitas. 78:188–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bennell KL, Hunter DJ and Hinman RS:
Management of osteoarthritis of the knee. BMJ. 345:e49342012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Jakob R: The management of early
osteoarthritis. Knee. 21:799–800. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kon E, Filardo G, Drobnic M, Madry H,
Jelic M, van Dijk N and Della Villa S: Non-surgical management of
early knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc.
20:436–449. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Musumeci G, Loreto C, Castorina S, Imbesi
R, Leonardi R and Castrogiovanni P: Current concepts in the
treatment of cartilage damage. A review. Ital J Anat Embryol.
118:189–203. 2013.PubMed/NCBI
|
13
|
Musumeci G, Mobasheri A, Trovato FM,
Szychlinska MA, Graziano AC, Lo Furno D, Avola R, Mangano S,
Giuffrida R and Cardile V: Biosynthesis of collagen I, II, RUNX2
and lubricin at different time points of chondrogenic
differentiation in a 3D in vitro model of human mesenchymal stem
cells derived from adipose tissue. Acta Histochem. 116:1407–1417.
2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Musumeci G, Castrogiovanni P, Leonardi R,
Trovato FM, Szychlinska MA, Di Giunta A, Loreto C and Castorina S:
New perspectives for articular cartilage repair treatment through
tissue engineering: A contemporary review. World J Orthop. 5:80–88.
2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Szychlinska MA, Stoddart MJ, D'Amora U,
Ambrosio L, Alini M PhD and Musumeci G: Mesenchymal stem cell-based
cartilage regeneration approach and cell senescence: Can we
manipulate cell aging and function? Tissue Eng Part B Rev. May
17–2017.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
16
|
Savkovic V, Li H, Seon JK, Hacker M, Franz
S and Simon JC: Mesenchymal stem cells in cartilage regeneration.
Curr Stem Cell Res Ther. 9:469–488. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pers YM, Ruiz M, Noël D and Jorgensen C:
Mesenchymal stem cells for the management of inflammation in
osteoarthritis: State of the art and perspectives. Osteoarthritis
Cartilage. 23:2027–2035. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Musumeci G, Lo Furno D, Loreto C,
Giuffrida R, Caggia S, Leonardi R and Cardile V: Mesenchymal stem
cells from adipose tissue which have been differentiated into
chondrocytes in three-dimensional culture express lubricin. Exp
Biol Med (Maywood). 236:1333–1341. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Szychlinska MA, Castrogiovanni P, Nsir H,
Di Rosa M, Guglielmino C, Parenti R, Calabrese G, Pricoco E,
Salvatorelli L, Magro G, et al: Engineered cartilage regeneration
from adipose tissue derived-mesenchymal stem cells: A
morphomolecular study on osteoblast, chondrocyte and apoptosis
evaluation. Exp Cell Res. 357:222–235. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ding DC, Chang YH, Shyu WC and Lin SZ:
Human umbilical cord mesenchymal stem cells: A new era for stem
cell therapy. Cell Transplant. 24:339–347. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gauthaman K, Yee FC, Cheyyatraivendran S,
Biswas A, Choolani M and Bongso A: Human umbilical cord Wharton's
jelly stem cell (hWJSC) extracts inhibit cancer cell growth in
vitro. J Cell Biochem. 113:2027–2039. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ali H, Al-Yatama MK, Abu-Farha M,
Behbehani K and Al Madhoun A: Multi-lineage differentiation of
human umbilical cord Wharton's Jelly Mesenchymal Stromal Cells
mediates changes in the expression profile of stemness markers.
PLoS One. 10:e01224652015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fernandes AM, Herlofsen SR, Karlsen TA,
Küchler AM, Fløisand Y and Brinchmann JE: Similar properties of
chondrocytes from osteoarthritis joints and mesenchymal stem cells
from healthy donors for tissue engineering of articular cartilage.
PLoS One. 8:e629942013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang ZH, Li XL, He XJ, Wu BJ, Xu M, Chang
HM, Zhang XH, Xing Z, Jing XH, Kong DM, et al: Delivery of the Sox9
gene promotes chondrogenic differentiation of human umbilical cord
blood-derived mesenchymal stem cells in an in vitro model. Braz J
Med Biol Res. 47:279–286. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hata K, Watanabe Y, Nakai H, Hata T and
Hoshiai H: Expression of the vascular endothelial growth factor
(VEGF) gene in epithelial ovarian cancer: An approach to anti-VEGF
therapy. Anticancer Res. 31:731–737. 2011.PubMed/NCBI
|
26
|
Puljak L, Marin A, Vrdoljak D, Markotic F,
Utrobicic A and Tugwell P: Celecoxib for osteoarthritis. Cochrane
Database Syst Rev. 5:CD0098652017.PubMed/NCBI
|
27
|
Xu Q, Chen B, Wang Y, Wang X, Han D, Ding
D, Zheng Y, Cao Y, Zhan H and Zhou Y: The effectiveness of manual
therapy for relieving pain, stiffness, and dysfunction in knee
osteoarthritis: A systematic review and meta-analysis. Pain
Physician. 20:229–243. 2017.PubMed/NCBI
|
28
|
Fellows CR, Matta C, Zakany R, Khan IM and
Mobasheri A: Adipose, bone marrow and synovial joint-derived
mesenchymal stem cells for cartilage repair. Front Genet.
7:2132016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chakravarthy K, Chen Y, He C and Christo
PJ: Stem cell therapy for chronic pain management: Review of uses,
advances, and adverse effects. Pain Physician. 20:293–305.
2017.PubMed/NCBI
|
30
|
Cui GH, Wang YY, Li CJ, Shi CH and Wang
WS: Efficacy of mesenchymal stem cells in treating patients with
osteoarthritis of the knee: A meta-analysis. Exp Ther Med.
12:3390–3400. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kohno Y, Mizuno M, Ozeki N, Katano H,
Komori K, Fujii S, Otabe K, Horie M, Koga H, Tsuji K, et al: Yields
and chondrogenic potential of primary synovial mesenchymal stem
cells are comparable between rheumatoid arthritis and
osteoarthritis patients. Stem Cell Res Ther. 8:1152017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Feng C, Luo X, He N, Xia H, Lv X, Zhang X,
Li D, Wang F, He J, Zhang L, et al: Efficacy and persistence of
allogeneic adipose-derived mesenchymal stem cells combined with
hyaluronic acid in osteoarthritis after intra-articular injection
in a sheep model. Tissue Eng Part A. Sep 27–2017.(Epub ahead of
print). PubMed/NCBI
|
33
|
Zhang Q, Chen Y, Wang Q, Fang C, Sun Y,
Yuan T, Wang Y, Bao R and Zhao N: Effect of bone marrow-derived
stem cells on chondrocytes from patients with osteoarthritis. Mol
Med Rep. 13:1795–1800. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kim SW, Han H, Chae GT, Lee SH, Bo S, Yoon
JH, Lee YS, Lee KS, Park HK and Kang KS: Successful stem cell
therapy using umbilical cord blood-derived multipotent stem cells
for Buerger's disease and ischemic limb disease animal model. Stem
Cells. 24:1620–1626. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Baker CD and Abman SH: Umbilical cord stem
cell therapy for bronchopulmonary dysplasia: Ready for prime time?
Thorax. 68:402–404. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gu Z, Akiyama K, Ma X, Zhang H, Feng X,
Yao G, Hou Y, Lu L, Gilkeson GS, Silver RM, et al: Transplantation
of umbilical cord mesenchymal stem cells alleviates lupus nephritis
in MRL/lpr mice. Lupus. 19:1502–1514. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nagamura-Inoue T and He H: Umbilical
cord-derived mesenchymal stem cells: Their advantages and potential
clinical utility. World J Stem Cells. 6:195–202. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mennan C, Brown S, McCarthy H,
Mavrogonatou E, Kletsas D, Garcia J, Balain B, Richardson J and
Roberts S: Mesenchymal stromal cells derived from whole human
umbilical cord exhibit similar properties to those derived from
Wharton's jelly and bone marrow. FEBS Open Bio. 6:1054–1066. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Li X, Duan L, Liang Y, Zhu W, Xiong J and
Wang D: Human umbilical cord blood-derived mesenchymal stem cells
contribute to chondrogenesis in coculture with chondrocytes. Biomed
Res Int. 2016:38270572016.PubMed/NCBI
|
40
|
Wang J, Li J, Deng N, Zhao X, Liu Y, Wang
X and Zhang H: Transfection of hBMP-2 into mesenchymal stem cells
derived from human umbilical cord blood and bone marrow induces
cell differentiation into chondrocytes. Minerva Med. 105:283–288.
2014.PubMed/NCBI
|
41
|
Zheng P, Ju L, Jiang B, Chen L, Dong Z,
Jiang L, Wang R and Lou Y: Chondrogenic differentiation of human
umbilical cord blood-derived mesenchymal stem cells by co-culture
with rabbit chondrocytes. Mol Med Rep. 8:1169–1182. 2013.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Mennan C, Wright K, Bhattacharjee A,
Balain B, Richardson J and Roberts S: Isolation and
characterisation of mesenchymal stem cells from different regions
of the human umbilical cord. Biomed Res Int. 2013:9161362013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wu L, Prins HJ, Helder MN, van
Blitterswijk CA and Karperien M: Trophic effects of mesenchymal
stem cells in chondrocyte co-cultures are independent of culture
conditions and cell sources. Tissue Eng Part A. 18:1542–1551. 2012.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Meretoja VV, Dahlin RL, Kasper FK and
Mikos AG: Enhanced chondrogenesis in co-cultures with articular
chondrocytes and mesenchymal stem cells. Biomaterials.
33:6362–6369. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Jo CH, Lee YG, Shin WH, Kim H, Chai JW,
Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, et al: Intra-articular
injection of mesenchymal stem cells for the treatment of
osteoarthritis of the knee: A proof-of-concept clinical trial. Stem
Cells. 32:1254–1266. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhu Y, Guan YM, Huang HL and Wang QS:
Human umbilical cord blood mesenchymal stem cell transplantation
suppresses inflammatory responses and neuronal apoptosis during
early stage of focal cerebral ischemia in rabbits. Acta Pharmacol
Sin. 35:585–591. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Min F, Gao F, Li Q and Liu Z: Therapeutic
effect of human umbilical cord mesenchymal stem cells modified by
angiotensin-converting enzyme 2 gene on bleomycin-induced lung
fibrosis injury. Mol Med Rep. 11:2387–2396. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Amable PR, Teixeira MV, Carias RB,
Granjeiro JM and Borojevic R: Protein synthesis and secretion in
human mesenchymal cells derived from bone marrow, adipose tissue
and Wharton's jelly. Stem Cell Res Ther. 5:532014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen J, Liu Z, Hong MM, Zhang H, Chen C,
Xiao M, Wang J, Yao F, Ba M, Liu J, et al: Proangiogenic
compositions of microvesicles derived from human umbilical cord
mesenchymal stem cells. PLoS One. 9:e1153162014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhang B, Wang M, Gong A, Zhang X, Wu X,
Zhu Y, Shi H, Wu L, Zhu W, Qian H and Xu W: HucMSC-exosome
mediated-Wnt4 signaling is required for cutaneous wound healing.
Stem Cells. 33:2158–2168. 2015. View Article : Google Scholar : PubMed/NCBI
|